-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP27.scala
37 lines (34 loc) · 1.61 KB
/
P27.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package list
// P27 (**) Group the elements of a set into disjoint subsets.
// a) In how many ways can a group of 9 people work in 3 disjoint subgroups
// of 2, 3 and 4 persons? Write a function that generates all the
// possibilities.
//
// scala> group3(List("Aldo", "Beat", "Carla", "David", "Evi", "Flip", "Gary", "Hugo", "Ida"))
// res0: List[List[List[String]]] = List(List(List(Aldo, Beat), List(Carla, David, Evi), List(Flip, Gary, Hugo, Ida)), ...
//
// b) Generalize the above predicate in a way that we can specify a list
// of group sizes and the predicate will return a list of groups.
//
// scala> group(List(2, 2, 5), List("Aldo", "Beat", "Carla", "David", "Evi", "Flip", "Gary", "Hugo", "Ida"))
// res0: List[List[List[String]]] = List(List(List(Aldo, Beat), List(Carla, David), List(Evi, Flip, Gary, Hugo, Ida)), ...
//
// Note that we do not want permutations of the group members;
// i.e. ((Aldo, Beat), ...) is the same solution as ((Beat, Aldo), ...).
// However, we make a difference between ((Aldo, Beat), (Carla, David), ...)
// and ((Carla, David), (Aldo, Beat), ...).
//
// You may find more about this combinatorial problem in a good book on
// discrete mathematics under the term "multinomial coefficients".
object P27:
def group3[A](l: List[A]): List[List[List[A]]] =
group(List(2, 3, 4), l)
def group[A](ns: List[Int], l: List[A]): List[List[List[A]]] =
ns match
case _ :: Nil => List(List(l))
case Nil => ???
case n :: next =>
for
xs <- P26.combinations(n, l)
xxs <- group(next, l.filterNot(xs.contains))
yield xs :: xxs