The AsciiMath grammar is defined as
v ::= [A-Za-z] | greek letters | numbers | other constant symbols
u ::= sqrt | text | bb | other unary symbols for font commands
b ::= frac | root | stackrel | other binary symbols
l ::= ( | [ | { | (: | {: | other left brackets
r ::= ) | ] | } | :) | :} | other right brackets
S ::= v | lEr | uS | bSS Simple expression
I ::= S_S | S^S | S_S^S | S Intermediate expression
E ::= IE | I/I Expression
syntax in EBNF style notation is
asciimath = expr*
expr = intermediate fraction?
fraction = '/' intermediate
intermediate = simp sub? super?
super = '^' simp
sub = '_' simp
simp = constant | paren_expr | unary_expr | binary_expr | text
paren_expr = lparen asciimath rparen
lparen = '(' | '[' | '{' | '(:' | '{:'
rparen = ')' | ']' | '}' | ':)' | ':}'
unary_expr = unary_op simp
unary_op = 'sqrt' | 'text'
binary_expr = binary_op simp simp
binary_op = 'frac' | 'root' | 'stackrel'
text = '"' [^"]* '"'
constant = number | symbol | identifier
number = '-'? [0-9]+ ( '.' [0-9]+ )?
symbol = /* any string in the symbol table */
identifier = [A-z]
The parser returns an abstract syntax tree consisting of AsciiMath::AST::Node
objects.
Each expression 'node' of the AST is one of the following forms:
- AsciiMath
-
asciimath
is converted to aAsciiMath::AST::Sequence
. An empty Array is converted to nil by the parser. A single elementAsciiMath::AST::Sequence
is unwrapped to just the element.Sequences of expressions are returned as `AsciiMath::AST::Sequence`s as well.
- Parentheses
-
lparen asciimath rparen
is converted toAsciiMath::AST::Paren
. When aparen
expression is used to group the operands of unary or binary operators aAsciiMath::AST::Group
is used instead. Thegroup
node retains the parentheses, but these are not rendered in the final output. - Super and Sub Script
-
simp sub
,simp super
andsimp sub super
are converted toAsciiMath::AST::SubSup
. - Unary Expressions
-
unary_op simp
is converted toAsciiMath::AST::UnaryOp
. - Binary Expressions
-
binary_op simp simp
is converted toAsciiMath::AST::BinaryOp
.intermediate / intermediate
is converted toAsciiMath::AST::InfixOp
. - Symbols
-
symbol
(mathematical operators, function names, arrows, accents, greek letters, etc.) is converted toAsciiMath::AST::Symbol
. The Symbol Table below list all the symbols that are recognized by the parser. - Identifiers
-
identifier
is converted toAsciiMath::AST::Identifier
. - Text
-
text
is converted toAsciiMath::AST::Text
. - Numbers
-
number
is converted toAsciiMath::AST::Number
. - Colors
-
The first operand of the
color
binary operator is converted toAsciiMath::AST::Color
. - Matrices
-
Matrices in AsciiMath are a special case of nested
paren_expr
. The matrix itself can be anyparen_expr
. Inside this outer matrixparen_expr
each row should be represented as aparen_expr
using either()
or[]
. Rows must be separated by commas (,
). The elements of each row must also be separated by commas. Each row must contain the same number of elements.When the parser detects a well-formed matrix expression it will strip away the
paren_expr
representation of the matrix and each row. Instead it returns aAsciiMath::AST::Matrix
. The matrix node contains aAsciiMath::AST::MatrixRow
for each row of the matrix. EachAsciiMath::AST::MatrixRow
contains a child node per column. Empty matrix cells are represented asAsciiMath::AST::Empty
.
AsciiMath | Symbol | MathML Value | LaTeX Value |
---|---|---|---|
+ |
:plus |
+ (U+002B) |
+ |
- |
:minus |
− (U+2212) |
- |
* |
:cdot |
⋅ (U+22C5) |
\cdot |
cdot |
:cdot |
⋅ (U+22C5) |
\cdot |
** |
:ast |
* (U+002A) |
* |
ast |
:ast |
* (U+002A) |
* |
*** |
:star |
⋆ (U+22C6) |
\star |
star |
:star |
⋆ (U+22C6) |
\star |
// |
:slash |
/ (U+002F) |
/ |
\\ |
:backslash |
\ (U+005C) |
\backslash |
backslash |
:backslash |
\ (U+005C) |
\backslash |
setminus |
:setminus |
\ (U+005C) |
\setminus |
xx |
:times |
× (U+00D7) |
\times |
times |
:times |
× (U+00D7) |
\times |
|>< |
:ltimes |
⋉ (U+22C9) |
\ltimes |
ltimes |
:ltimes |
⋉ (U+22C9) |
\ltimes |
><| |
:rtimes |
⋊ (U+22CA) |
\rtimes |
rtimes |
:rtimes |
⋊ (U+22CA) |
\rtimes |
|><| |
:bowtie |
⋈ (U+22C8) |
\bowtie |
bowtie |
:bowtie |
⋈ (U+22C8) |
\bowtie |
-: |
:div |
÷ (U+00F7) |
\div |
div |
:div |
÷ (U+00F7) |
\div |
divide |
:div |
÷ (U+00F7) |
\div |
@ |
:circ |
⚬ (U+26AC) |
\circ |
circ |
:circ |
⚬ (U+26AC) |
\circ |
o+ |
:oplus |
⊕ (U+2295) |
\oplus |
oplus |
:oplus |
⊕ (U+2295) |
\oplus |
ox |
:otimes |
⊗ (U+2297) |
\otimes |
otimes |
:otimes |
⊗ (U+2297) |
\otimes |
o. |
:odot |
⊙ (U+2299) |
\odot |
odot |
:odot |
⊙ (U+2299) |
\odot |
sum |
:sum |
∑ (U+2211) |
\sum |
prod |
:prod |
∏ (U+220F) |
\prod |
^^ |
:wedge |
∧ (U+2227) |
\wedge |
wedge |
:wedge |
∧ (U+2227) |
\wedge |
^^^ |
:bigwedge |
⋀ (U+22C0) |
\bigwedge |
bigwedge |
:bigwedge |
⋀ (U+22C0) |
\bigwedge |
vv |
:vee |
∨ (U+2228) |
\vee |
vee |
:vee |
∨ (U+2228) |
\vee |
vvv |
:bigvee |
⋁ (U+22C1) |
\bigvee |
bigvee |
:bigvee |
⋁ (U+22C1) |
\bigvee |
nn |
:cap |
∩ (U+2229) |
\cap |
cap |
:cap |
∩ (U+2229) |
\cap |
nnn |
:bigcap |
⋂ (U+22C2) |
\bigcap |
bigcap |
:bigcap |
⋂ (U+22C2) |
\bigcap |
uu |
:cup |
∪ (U+222A) |
\cup |
cup |
:cup |
∪ (U+222A) |
\cup |
uuu |
:bigcup |
⋃ (U+22C3) |
\bigcup |
bigcup |
:bigcup |
⋃ (U+22C3) |
\bigcup |
= |
:eq |
= (U+003D) |
= |
!= |
:ne |
≠ (U+2260) |
\neq |
ne |
:ne |
≠ (U+2260) |
\neq |
:= |
:assign |
≔ (U+2254) |
:= |
< |
:lt |
< (U+003C) |
< |
lt |
:lt |
< (U+003C) |
< |
> |
:gt |
> (U+003E) |
> |
gt |
:gt |
> (U+003E) |
> |
<= |
:le |
≤ (U+2264) |
\le |
le |
:le |
≤ (U+2264) |
\le |
>= |
:ge |
≥ (U+2265) |
\ge |
ge |
:ge |
≥ (U+2265) |
\ge |
-< |
:prec |
≺ (U+227A) |
\prec |
-lt |
:prec |
≺ (U+227A) |
\prec |
prec |
:prec |
≺ (U+227A) |
\prec |
>- |
:succ |
≻ (U+227B) |
\succ |
succ |
:succ |
≻ (U+227B) |
\succ |
-<= |
:preceq |
⪯ (U+2AAF) |
\preceq |
preceq |
:preceq |
⪯ (U+2AAF) |
\preceq |
>-= |
:succeq |
⪰ (U+2AB0) |
\succeq |
succeq |
:succeq |
⪰ (U+2AB0) |
\succeq |
in |
:in |
∈ (U+2208) |
\in |
!in |
:notin |
∉ (U+2209) |
\notin |
notin |
:notin |
∉ (U+2209) |
\notin |
sub |
:subset |
⊂ (U+2282) |
\subset |
subset |
:subset |
⊂ (U+2282) |
\subset |
sup |
:supset |
⊃ (U+2283) |
\supset |
supset |
:supset |
⊃ (U+2283) |
\supset |
sube |
:subseteq |
⊆ (U+2286) |
\subseteq |
subseteq |
:subseteq |
⊆ (U+2286) |
\subseteq |
supe |
:supseteq |
⊇ (U+2287) |
\supseteq |
supseteq |
:supseteq |
⊇ (U+2287) |
\supseteq |
-= |
:equiv |
≡ (U+2261) |
\equiv |
equiv |
:equiv |
≡ (U+2261) |
\equiv |
~= |
:cong |
≅ (U+2245) |
\cong |
cong |
:cong |
≅ (U+2245) |
\cong |
~~ |
:approx |
≈ (U+2248) |
\approx |
approx |
:approx |
≈ (U+2248) |
\approx |
prop |
:propto |
∝ (U+221D) |
\propto |
propto |
:propto |
∝ (U+221D) |
\propto |
and |
:and |
\operatorname{and} |
|
or |
:or |
\operatorname{or} |
|
not |
:not |
¬ (U+00AC) |
\not |
neg |
:not |
¬ (U+00AC) |
\not |
=> |
:implies |
⇒ (U+21D2) |
\Rightarrow |
implies |
:implies |
⇒ (U+21D2) |
\Rightarrow |
if |
:if |
\operatorname{if} |
|
<=> |
:iff |
⇔ (U+21D4) |
\Leftrightarrow |
iff |
:iff |
⇔ (U+21D4) |
\Leftrightarrow |
AA |
:forall |
∀ (U+2200) |
\forall |
forall |
:forall |
∀ (U+2200) |
\forall |
EE |
:exists |
∃ (U+2203) |
\exists |
exists |
:exists |
∃ (U+2203) |
\exists |
_|_ |
:bot |
⊥ (U+22A5) |
\bot |
bot |
:bot |
⊥ (U+22A5) |
\bot |
TT |
:top |
⊤ (U+22A4) |
\top |
top |
:top |
⊤ (U+22A4) |
\top |
|-- |
:vdash |
⊢ (U+22A2) |
\vdash |
vdash |
:vdash |
⊢ (U+22A2) |
\vdash |
|== |
:models |
⊨ (U+22A8) |
\models |
models |
:models |
⊨ (U+22A8) |
\models |
( |
:lparen |
( (U+0028) |
( |
left( |
:lparen |
( (U+0028) |
( |
) |
:rparen |
) (U+0029) |
) |
right) |
:rparen |
) (U+0029) |
) |
[ |
:lbracket |
[ (U+005B) |
[ |
left[ |
:lbracket |
[ (U+005B) |
[ |
] |
:rbracket |
] (U+005D) |
] |
right] |
:rbracket |
] (U+005D) |
] |
{ |
:lbrace |
{ (U+007B) |
\{ |
} |
:rbrace |
} (U+007D) |
\} |
| |
:vbar |
| (U+007C) |
| |
:|: |
:vbar |
| (U+007C) |
| |
|: |
:vbar |
| (U+007C) |
| |
:| |
:vbar |
| (U+007C) |
| |
(: |
:langle |
〈 (U+2329) |
\langle |
<< |
:langle |
〈 (U+2329) |
\langle |
langle |
:langle |
〈 (U+2329) |
\langle |
:) |
:rangle |
〉 (U+232A) |
\rangle |
>> |
:rangle |
〉 (U+232A) |
\rangle |
rangle |
:rangle |
〉 (U+232A) |
\rangle |
int |
:integral |
∫ (U+222B) |
\int |
dx |
:dx |
dx |
|
dy |
:dy |
dy |
|
dz |
:dz |
dz |
|
dt |
:dt |
dt |
|
oint |
:contourintegral |
∮ (U+222E) |
\oint |
del |
:partial |
∂ (U+2202) |
\del |
partial |
:partial |
∂ (U+2202) |
\del |
grad |
:nabla |
∇ (U+2207) |
\nabla |
nabla |
:nabla |
∇ (U+2207) |
\nabla |
+- |
:pm |
± (U+00B1) |
\pm |
pm |
:pm |
± (U+00B1) |
\pm |
O/ |
:emptyset |
∅ (U+2205) |
\emptyset |
emptyset |
:emptyset |
∅ (U+2205) |
\emptyset |
oo |
:infty |
∞ (U+221E) |
\infty |
infty |
:infty |
∞ (U+221E) |
\infty |
aleph |
:aleph |
ℵ (U+2135) |
\aleph |
... |
:ellipsis |
… (U+2026) |
\ldots |
ldots |
:ellipsis |
… (U+2026) |
\ldots |
:. |
:therefore |
∴ (U+2234) |
\therefore |
therefore |
:therefore |
∴ (U+2234) |
\therefore |
:' |
:because |
∵ (U+2235) |
\because |
because |
:because |
∵ (U+2235) |
\because |
/_ |
:angle |
∠ (U+2220) |
\angle |
angle |
:angle |
∠ (U+2220) |
\angle |
/_\ |
:triangle |
△ (U+25B3) |
\triangle |
triangle |
:triangle |
△ (U+25B3) |
\triangle |
' |
:prime |
′ (U+2032) |
' |
prime |
:prime |
′ (U+2032) |
' |
tilde |
:tilde |
~ (U+007E) |
\~ |
\ |
:nbsp |
(U+00A0) |
\; |
frown |
:frown |
⌢ (U+2322) |
\frown |
quad |
:quad |
\quad |
|
qquad |
:qquad |
\qquad |
|
cdots |
:cdots |
⋯ (U+22EF) |
\cdots |
vdots |
:vdots |
⋮ (U+22EE) |
\vdots |
ddots |
:ddots |
⋱ (U+22F1) |
\ddots |
diamond |
:diamond |
⋄ (U+22C4) |
\diamond |
square |
:square |
□ (U+25A1) |
\square |
|__ |
:lfloor |
⌊ (U+230A) |
\lfloor |
lfloor |
:lfloor |
⌊ (U+230A) |
\lfloor |
__| |
:rfloor |
⌋ (U+230B) |
\rfloor |
rfloor |
:rfloor |
⌋ (U+230B) |
\rfloor |
|~ |
:lceiling |
⌈ (U+2308) |
\lceil |
lceiling |
:lceiling |
⌈ (U+2308) |
\lceil |
~| |
:rceiling |
⌉ (U+2309) |
\rceil |
rceiling |
:rceiling |
⌉ (U+2309) |
\rceil |
CC |
:dstruck_captial_c |
ℂ (U+2102) |
\mathbb{C} |
NN |
:dstruck_captial_n |
ℕ (U+2115) |
\mathbb{N} |
:dstruck_captial_q |
ℚ (U+211A) |
\mathbb{Q} |
|
RR |
:dstruck_captial_r |
ℝ (U+211D) |
\mathbb{R} |
ZZ |
:dstruck_captial_z |
ℤ (U+2124) |
\mathbb{Z} |
f |
:f |
f (U+0066) |
f |
g |
:g |
g (U+0067) |
g |
lim |
:lim |
\lim |
|
Lim |
:Lim |
\operatorname{Lim} |
|
min |
:min |
\min |
|
max |
:max |
\max |
|
sin |
:sin |
\sin |
|
Sin |
:Sin |
\operatorname{Sin} |
|
cos |
:cos |
\cos |
|
Cos |
:Cos |
\operatorname{Cos} |
|
tan |
:tan |
\tan |
|
Tan |
:Tan |
\operatorname{Tan} |
|
sinh |
:sinh |
\sinh |
|
Sinh |
:Sinh |
\operatorname{Sinh} |
|
cosh |
:cosh |
\cosh |
|
Cosh |
:Cosh |
\operatorname{Cosh} |
|
tanh |
:tanh |
\tanh |
|
Tanh |
:Tanh |
\operatorname{Tanh} |
|
cot |
:cot |
\cot |
|
Cot |
:Cot |
\operatorname{Cot} |
|
sec |
:sec |
\sec |
|
Sec |
:Sec |
\operatorname{Sec} |
|
csc |
:csc |
\csc |
|
Csc |
:Csc |
\operatorname{Csc} |
|
arcsin |
:arcsin |
\arcsin |
|
arccos |
:arccos |
\arccos |
|
arctan |
:arctan |
\arctan |
|
coth |
:coth |
\coth |
|
sech |
:sech |
\operatorname{sech} |
|
csch |
:csch |
\operatorname{csch} |
|
exp |
:exp |
\exp |
|
abs |
:abs |
\abs |
|
Abs |
:abs |
\abs |
|
norm |
:norm |
\norm |
|
floor |
:floor |
\floor |
|
ceil |
:ceil |
\ceil |
|
log |
:log |
\log |
|
Log |
:Log |
\operatorname{Log} |
|
ln |
:ln |
\ln |
|
Ln |
:Ln |
\operatorname{Ln} |
|
det |
:det |
\det |
|
dim |
:dim |
\dim |
|
mod |
:mod |
\mod |
|
gcd |
:gcd |
\gcd |
|
lcm |
:lcm |
\operatorname{lcm} |
|
lub |
:lub |
\operatorname{lub} |
|
glb |
:glb |
\operatorname{glb} |
|
uarr |
:uparrow |
↑ (U+2191) |
\uparrow |
uparrow |
:uparrow |
↑ (U+2191) |
\uparrow |
darr |
:downarrow |
↓ (U+2193) |
\downarrow |
downarrow |
:downarrow |
↓ (U+2193) |
\downarrow |
rarr |
:rightarrow |
→ (U+2192) |
\rightarrow |
rightarrow |
:rightarrow |
→ (U+2192) |
\rightarrow |
-> |
:to |
→ (U+2192) |
\rightarrow |
to |
:to |
→ (U+2192) |
\rightarrow |
>-> |
:rightarrowtail |
↣ (U+21A3) |
\rightarrowtail |
rightarrowtail |
:rightarrowtail |
↣ (U+21A3) |
\rightarrowtail |
->> |
:twoheadrightarrow |
↠ (U+21A0) |
\twoheadrightarrow |
twoheadrightarrow |
:twoheadrightarrow |
↠ (U+21A0) |
\twoheadrightarrow |
>->> |
:twoheadrightarrowtail |
⤖ (U+2916) |
\twoheadrightarrowtail |
twoheadrightarrowtail |
:twoheadrightarrowtail |
⤖ (U+2916) |
\twoheadrightarrowtail |
|-> |
:mapsto |
↦ (U+21A6) |
\mapsto |
mapsto |
:mapsto |
↦ (U+21A6) |
\mapsto |
larr |
:leftarrow |
← (U+2190) |
\leftarrow |
leftarrow |
:leftarrow |
← (U+2190) |
\leftarrow |
harr |
:leftrightarrow |
↔ (U+2194) |
\leftrightarrow |
leftrightarrow |
:leftrightarrow |
↔ (U+2194) |
\leftrightarrow |
rArr |
:Rightarrow |
⇒ (U+21D2) |
\Rightarrow |
Rightarrow |
:Rightarrow |
⇒ (U+21D2) |
\Rightarrow |
lArr |
:Leftarrow |
⇐ (U+21D0) |
\Leftarrow |
Leftarrow |
:Leftarrow |
⇐ (U+21D0) |
\Leftarrow |
hArr |
:Leftrightarrow |
⇔ (U+21D4) |
\Leftrightarrow |
Leftrightarrow |
:Leftrightarrow |
⇔ (U+21D4) |
\Leftrightarrow |
sqrt |
:sqrt |
sqrt () |
\sqrt |
root |
:root |
root () |
\root |
frac |
:frac |
frac () |
\frac |
/ |
:frac |
frac () |
\frac |
stackrel |
:stackrel |
stackrel () |
\stackrel |
overset |
:overset |
overset () |
\overset |
underset |
:underset |
underset () |
\underset |
color |
:color |
color () |
\color |
_ |
:sub |
_ (U+005F) |
\text{–} |
^ |
:sup |
^ (U+005E) |
\text{^} |
hat |
:hat |
^ (U+005E) |
\hat |
bar |
:overline |
¯ (U+00AF) |
\overline |
vec |
:vec |
→ (U+2192) |
\vec |
dot |
:dot |
. (U+002E) |
\dot |
ddot |
:ddot |
\ddot |
|
overarc |
:overarc |
⏜ (U+23DC) |
\overarc |
overparen |
:overarc |
⏜ (U+23DC) |
\overarc |
ul |
:underline |
_ (U+005F) |
\underline |
underline |
:underline |
_ (U+005F) |
\underline |
ubrace |
:underbrace |
⏟ (U+23DF) |
\underbrace |
underbrace |
:underbrace |
⏟ (U+23DF) |
\underbrace |
obrace |
:overbrace |
⏞ (U+23DE) |
\overbrace |
overbrace |
:overbrace |
⏞ (U+23DE) |
\overbrace |
cancel |
:cancel |
cancel () |
\cancel |
bb |
:bold |
bold () |
\mathbf |
bbb |
:double_struck |
double_struck () |
\mathbb |
ii |
:italic |
italic () |
\mathit |
bii |
:bold_italic |
bold_italic () |
\mathbf |
cc |
:script |
script () |
\mathscr |
bcc |
:bold_script |
bold_script () |
\mathscr |
tt |
:monospace |
monospace () |
\mathtt |
fr |
:fraktur |
fraktur () |
\mathfrak |
bfr |
:bold_fraktur |
bold_fraktur () |
\mathfrak |
sf |
:sans_serif |
sans_serif () |
\mathsf |
bsf |
:bold_sans_serif |
bold_sans_serif () |
\mathsf |
sfi |
:sans_serif_italic |
sans_serif_italic () |
\mathsf |
sfbi |
:sans_serif_bold_italic |
sans_serif_bold_italic () |
\mathsf |
alpha |
:alpha |
α (U+03B1) |
\alpha |
Alpha |
:Alpha |
Α (U+0391) |
\Alpha |
beta |
:beta |
β (U+03B2) |
\beta |
Beta |
:Beta |
Β (U+0392) |
\Beta |
gamma |
:gamma |
γ (U+03B3) |
\gamma |
Gamma |
:Gamma |
Γ (U+0393) |
\Gamma |
delta |
:delta |
δ (U+03B4) |
\delta |
Delta |
:Delta |
Δ (U+0394) |
\Delta |
epsi |
:epsilon |
ε (U+03B5) |
\epsilon |
epsilon |
:epsilon |
ε (U+03B5) |
\epsilon |
Epsilon |
:Epsilon |
Ε (U+0395) |
\Epsilon |
varepsilon |
:varepsilon |
ɛ (U+025B) |
\varepsilon |
zeta |
:zeta |
ζ (U+03B6) |
\zeta |
Zeta |
:Zeta |
Ζ (U+0396) |
\Zeta |
eta |
:eta |
η (U+03B7) |
\eta |
Eta |
:Eta |
Η (U+0397) |
\Eta |
theta |
:theta |
θ (U+03B8) |
\theta |
Theta |
:Theta |
Θ (U+0398) |
\Theta |
vartheta |
:vartheta |
ϑ (U+03D1) |
\vartheta |
iota |
:iota |
ι (U+03B9) |
\iota |
Iota |
:Iota |
Ι (U+0399) |
\Iota |
kappa |
:kappa |
κ (U+03BA) |
\kappa |
Kappa |
:Kappa |
Κ (U+039A) |
\Kappa |
lambda |
:lambda |
λ (U+03BB) |
\lambda |
Lambda |
:Lambda |
Λ (U+039B) |
\Lambda |
mu |
:mu |
μ (U+03BC) |
\mu |
Mu |
:Mu |
Μ (U+039C) |
\Mu |
nu |
:nu |
ν (U+03BD) |
\nu |
Nu |
:Nu |
Ν (U+039D) |
\Nu |
xi |
:xi |
ξ (U+03BE) |
\xi |
Xi |
:Xi |
Ξ (U+039E) |
\Xi |
omicron |
:omicron |
ο (U+03BF) |
\omicron |
Omicron |
:Omicron |
Ο (U+039F) |
\Omicron |
pi |
:pi |
π (U+03C0) |
\pi |
Pi |
:Pi |
Π (U+03A0) |
\Pi |
rho |
:rho |
ρ (U+03C1) |
\rho |
Rho |
:Rho |
Ρ (U+03A1) |
\Rho |
sigma |
:sigma |
σ (U+03C3) |
\sigma |
Sigma |
:Sigma |
Σ (U+03A3) |
\Sigma |
tau |
:tau |
τ (U+03C4) |
\tau |
Tau |
:Tau |
Τ (U+03A4) |
\Tau |
upsilon |
:upsilon |
υ (U+03C5) |
\upsilon |
Upsilon |
:Upsilon |
Υ (U+03A5) |
\Upsilon |
phi |
:phi |
φ (U+03C6) |
\phi |
Phi |
:Phi |
Φ (U+03A6) |
\Phi |
varphi |
:varphi |
ϕ (U+03D5) |
\varphi |
chi |
:chi |
χ (U+03C7) |
\chi |
Chi |
:Chi |
Χ (U+03A7) |
\Chi |
psi |
:psi |
ψ (U+03C8) |
\psi |
Psi |
:Psi |
Ψ (U+03A8) |
\Psi |
omega |
:omega |
ω (U+03C9) |
\omega |
Omega |
:Omega |
Ω (U+03A9) |
\Omega |