-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathsgd_trainer.py
312 lines (262 loc) · 11.9 KB
/
sgd_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy
import theano
from theano import tensor as T
from collections import OrderedDict
import time
from fish import ProgressFish
from nn_layers import build_shared_zeros
class MiniBatchIterator(object):
""" Basic mini-batch iterator """
def __init__(self, rng, datasets, batch_size=100, randomize=False):
self.rng = rng
self.datasets = datasets
self.batch_size = batch_size
self.n_samples = self.datasets[0].shape[0]
self.n_batches = (self.n_samples + self.batch_size - 1) / self.batch_size
# self.n_batches = self.n_samples / self.batch_size # Prevents the last batch to be smaller than batch_size (this makes conv2d fail)
self.randomize = randomize
def __len__(self):
return self.n_batches
def __iter__(self):
n_batches = self.n_batches
batch_size = self.batch_size
n_samples = self.n_samples
if self.randomize:
# for _ in xrange(self.n_samples / self.batch_size):
for _ in xrange(n_batches):
if batch_size > 1:
i = int(self.rng.rand(1) * n_batches)
else:
i = int(math.floor(self.rng.rand(1) * n_samples))
yield [x[i*batch_size:min((i+1)*batch_size, n_samples)] for x in self.datasets]
else:
for i in xrange(n_batches):
yield [x[i*batch_size:min((i+1)*batch_size, n_samples)] for x in self.datasets]
class MiniBatchIteratorConstantBatchSize(object):
""" Basic mini-batch iterator """
def __init__(self, rng, datasets, batch_size=100, randomize=False):
self.rng = rng
self.batch_size = batch_size
self.n_samples = datasets[0].shape[0]
padded_datasets = []
for d in datasets:
pad_size = batch_size - len(d) % batch_size
pad = d[:pad_size]
# print 'd.shape, pad', d.shape, pad.shape
padded_dataset = numpy.concatenate([d, pad])
padded_datasets.append(padded_dataset)
self.datasets = padded_datasets
self.n_batches = (self.n_samples + self.batch_size - 1) / self.batch_size
# self.n_batches = self.n_samples / self.batch_size
self.randomize = randomize
# print 'n_samples', self.n_samples
# print 'n_batches', self.n_batches
def __len__(self):
return self.n_batches
def __iter__(self):
n_batches = self.n_batches
batch_size = self.batch_size
n_samples = self.n_samples
if self.randomize:
for _ in xrange(n_batches):
i = self.rng.randint(n_batches)
yield [x[i*batch_size:(i+1)*batch_size] for x in self.datasets]
else:
for i in xrange(n_batches):
yield [x[i*batch_size:(i+1)*batch_size] for x in self.datasets]
class DatasetMiniBatchIterator(object):
""" Basic mini-batch iterator """
def __init__(self, rng, x, y, batch_size=100, randomize=False):
self.rng = rng
self.x = x
self.y = y
self.batch_size = batch_size
self.n_samples = self.x.shape[0]
self.n_batches = (self.n_samples + self.batch_size - 1) / self.batch_size
# self.n_batches = self.n_samples / self.batch_size # Prevents the last batch to be smaller than batch_size (this makes conv2d fail)
self.randomize = randomize
def __len__(self):
return self.n_batches
def __iter__(self):
if self.randomize:
# for _ in xrange(self.n_samples / self.batch_size):
for _ in xrange(self.n_batches):
if self.batch_size > 1:
i = int(self.rng.rand(1) * self.n_batches)
else:
i = int(math.floor(self.rng.rand(1) * self.n_samples))
yield (self.x[i*self.batch_size:min((i+1)*self.batch_size, self.n_samples)],
self.y[i*self.batch_size:min((i+1)*self.batch_size, self.n_samples)])
else:
for i in xrange(self.n_batches):
yield (self.x[i*self.batch_size:min((i+1)*self.batch_size, self.n_samples)],
self.y[i*self.batch_size:min((i+1)*self.batch_size, self.n_samples)])
def get_sgd_updates(cost, params, learning_rate=0.1, max_norm=9, rho=0.95):
""" Returns an Adagrad (Duchi et al. 2010) trainer using a learning rate.
"""
print "Generating sgd updates"
gparams = T.grad(cost, params)
# compute list of weights updates
updates = OrderedDict()
for param, gparam in zip(params, gparams):
if max_norm:
W = param - gparam * learning_rate
col_norms = W.norm(2, axis=0)
desired_norms = T.clip(col_norms, 0, max_norm)
updates[param] = W * (desired_norms / (1e-6 + col_norms))
else:
updates[param] = param - gparam * learning_rate
return updates
def get_adagrad_updates(mean_cost, params, learning_rate=0.1, max_norm=9, _eps=1e-6):
""" Returns an Adagrad (Duchi et al. 2010) trainer using a learning rate.
"""
print "Generating adagrad updates"
# compute the gradients with respect to the model parameters
gparams = T.grad(mean_cost, params)
accugrads = []
for param in params:
accugrads.append(build_shared_zeros(param.shape.eval(), 'accugrad'))
# compute list of weights updates
updates = OrderedDict()
for accugrad, param, gparam in zip(accugrads, params, gparams):
# c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
agrad = accugrad + gparam * gparam
dx = - (learning_rate / T.sqrt(agrad + _eps)) * gparam
update = param + dx
if max_norm:
W = param + dx
col_norms = W.norm(2, axis=0)
desired_norms = T.clip(col_norms, 0, max_norm)
update = W * (desired_norms / (1e-6 + col_norms))
updates[param] = update
updates[accugrad] = agrad
return updates
def get_adadelta_updates(cost, params, rho=0.95, eps=1e-6, max_norm=9, word_vec_name='W_emb'):
"""
adadelta update rule, mostly from
https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
print "Generating adadelta updates"
updates = OrderedDict({})
exp_sqr_grads = OrderedDict({})
exp_sqr_ups = OrderedDict({})
gparams = []
for param in params:
exp_sqr_grads[param] = build_shared_zeros(param.shape.eval(), name="exp_grad_%s" % param.name)
gp = T.grad(cost, param)
exp_sqr_ups[param] = build_shared_zeros(param.shape.eval(), name="exp_grad_%s" % param.name)
gparams.append(gp)
for param, gp in zip(params, gparams):
exp_sg = exp_sqr_grads[param]
exp_su = exp_sqr_ups[param]
up_exp_sg = rho * exp_sg + (1 - rho) * T.sqr(gp)
updates[exp_sg] = up_exp_sg
step = -(T.sqrt(exp_su + eps) / T.sqrt(up_exp_sg + eps)) * gp
updates[exp_su] = rho * exp_su + (1 - rho) * T.sqr(step)
stepped_param = param + step
# if (param.get_value(borrow=True).ndim == 2) and (param.name != word_vec_name):
if max_norm and param.name != word_vec_name:
col_norms = T.sqrt(T.sum(T.sqr(stepped_param), axis=0))
desired_norms = T.clip(col_norms, 0, T.sqrt(max_norm))
scale = desired_norms / (1e-7 + col_norms)
updates[param] = stepped_param * scale
else:
updates[param] = stepped_param
return updates
def _get_adadelta_updates(cost, params, rho=0.95, eps=1e-6, max_norm=9, word_vec_name='W_emb'):
print "Generating adadelta updates (implementation from dnn)"
# compute list of weights updates
gparams = T.grad(cost, params)
accugrads, accudeltas = [], []
for param in params:
accugrads.append(build_shared_zeros(param.shape.eval(), 'accugrad'))
accudeltas.append(build_shared_zeros(param.shape.eval(), 'accudelta'))
# compute list of weights updates
updates = OrderedDict()
for accugrad, accudelta, param, gparam in zip(accugrads, accudeltas, params, gparams):
# c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
agrad = rho * accugrad + (1 - rho) * gparam * gparam
dx = - T.sqrt((accudelta + eps) / (agrad + eps)) * gparam
updates[accudelta] = (rho * accudelta + (1 - rho) * dx * dx)
if (max_norm > 0) and param.ndim == 2 and param.name != word_vec_name:
W = param + dx
col_norms = W.norm(2, axis=0)
desired_norms = T.clip(col_norms, 0, T.sqrt(max_norm))
updates[param] = W * (desired_norms / (1e-7 + col_norms))
else:
updates[param] = param + dx
updates[accugrad] = agrad
return updates
class Trainer(object):
def __init__(self, rng, cost, errors, params, method, learning_rate=0.01, max_norm=9):
self.rng = rng
self.cost = cost
self.errors = errors
self.params = params
self.batch_x = T.lmatrix('batch_x')
self.batch_y = T.ivector('batch_y')
if method == 'adagrad':
self.updates = get_adagrad_updates(cost, params, learning_rate=learning_rate, max_norm=max_norm, _eps=1e-6)
def _batch_score(self, batch_iterator):
""" returned function that scans the entire set given as input """
score_fn = theano.function(inputs=[self.batch_x, self.batch_y],
outputs=self.errors,
givens={x: batch_x, y: batch_y})
def foo():
return [score_fn(batch_x, batch_y) for batch_x, batch_y in batch_iterator]
return foo
def fit(self, x_train, y_train, x_dev=None, y_dev=None, batch_size=100):
train_fn = theano.function(inputs=[self.batch_x, self.batch_y],
outputs=self.cost,
updates=self.updates,
givens={x: self.batch_x, y: self.batch_y})
train_set_iterator = DatasetMiniBatchIterator(self.rng, x_train, y_train, batch_size=batch_size, randomize=True)
dev_set_iterator = DatasetMiniBatchIterator(self.rng, x_dev, y_dev, batch_size=batch_size, randomize=False)
train_score = self._batch_score(train_set_iterator)
dev_score = self._batch_score(dev_set_iterator)
best_dev_error = numpy.inf
epoch = 0
timer_train = time.time()
while epoch < n_epochs:
avg_costs = []
timer = time.time()
fish = ProgressFish(total=len(train_set_iterator))
for i, (x, y) in enumerate(train_set_iterator, 1):
fish.animate(amount=i)
avg_cost = train_fn(x, y)
if type(avg_cost) == list:
avg_costs.append(avg_cost[0])
else:
avg_costs.append(avg_cost)
mean_cost = numpy.mean(avg_costs)
mean_train_error = numpy.mean(train_score())
dev_error = numpy.mean(dev_score())
print('epoch {} took {:.4f} seconds; '
'avg costs: {:.4f}; train error: {:.4f}; '
'dev error: {:.4f}'.format(epoch,time.time() - timer, mean_cost,
mean_train_error, dev_error))
if dev_error < best_dev_error:
best_dev_error = dev_error
best_params = [numpy.copy(p.get_value()) for p in params]
epoch += 1
print('Training took: {:.4f} seconds'.format(time.time() - timer_train))
for i, param in enumerate(best_params):
params[i].set_value(param, borrow=True)
def predict(self, x_test, y_test):
test_set_iterator = DatasetMiniBatchIterator(self.rng, x_test, y_test, batch_size=batch_size, randomize=False)
test_score = self._batch_score(test_set_iterator)
print "Testing..."
test_errors = numpy.mean(test_score())
print "test error: {:.4f}".format(test_errors)
if __name__ == '__main__':
nrows, ncols = 3813, 3
batch_size = 50
# x = numpy.arange(nrows * ncols).reshape((nrows, ncols))
x = numpy.arange(nrows)
print x[-1]
rng = numpy.random.RandomState(123)
x_iter = MiniBatchIteratorConstantBatchSize(rng, [x], batch_size=batch_size, randomize=False)
for _ in xrange(100):
for (batch,) in x_iter:
assert len(batch) == batch_size
print x_iter.n_samples