-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexptmp.dats
303 lines (263 loc) · 6.15 KB
/
exptmp.dats
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
(*
** Expression templates in ATS2
**
** based on the article:
** http://www.angelikalanger.com/Articles/Cuj/ExpressionTemplates/ExpressionTemplates.htm
**
** NOTE: also take a look at the follow-ups:
** https://github.com/githwxi/ATS-Postiats-test/blob/master/contrib/hwxi/TEST0/exptmp.dats
** https://github.com/githwxi/ATS-Postiats-test/blob/master/contrib/hwxi/TEST0/exptmp_ref.dats
**
** Author: Artyom Shalkhakov
** Date: Mar 14, 2015
** License: Public Domain
**
*)
#include
"share/atspre_staload.hats"
staload UN = "prelude/SATS/unsafe.sats"
(*
// from http://www.angelikalanger.com/Articles/Cuj/ExpressionTemplates/ExpressionTemplates.htm
template <size_t N, class T>
class DotProduct {
public:
static T eval(T* a, T* b)
{ return DotProduct<1,T>::eval(a,b)
+ DotProduct<N-1,T>::eval(a+1,b+1);
}
};
template <class T>
class DotProduct<1,T> {
public:
static T eval(T* a, T* b)
{ return ( *a ) * ( *b ); }
};
*)
// NOTE: took this approach from HX:
// https://github.com/githwxi/ATS-Postiats/blob/master/doc/EXAMPLE/TYPEVAL/dotprod.dats
abstype Z
abstype S(type)
dataprop
tieq (type, int) =
| TIEQZ(Z, 0)
| {t:type}{n:nat} TIEQS(S(t), n+1) of tieq(t, n)
(* ****** ****** *)
// interface
extern
fun{T:t@ype}{N:type}
DotProduct_eval {n:nat} (pf: tieq (N, n) | &RD(@[T][n]), &RD(@[T][n])): T
// implementation
implement(T)
DotProduct_eval<T><Z> (pf | x, y) = gnumber_int<T> (0)
implement(T,N)
DotProduct_eval<T><S(N)> {n} (pf | x, y) = let
prval TIEQS(pf) = pf
val px = addr@(x)
val py = addr@(y)
prval pfxarr = view@(x)
prval (pfxat, pfxarr1) = array_v_uncons (pfxarr)
prval pfyarr = view@(y)
prval (pfyat, pfyarr1) = array_v_uncons (pfyarr)
val s = gmul_val<T> (!px, !py)
val px_1 = ptr1_succ<T> (px)
val (pfxarr1 | px_1) = viewptr_match (pfxarr1 | px_1)
val py_1 = ptr1_succ<T> (py)
val (pfyarr1 | py_1) = viewptr_match (pfyarr1 | py_1)
val res = DotProduct_eval<T><N> (pf | !px_1, !py_1)
prval () = view@(x) := array_v_cons (pfxat, pfxarr1)
prval () = view@(y) := array_v_cons (pfyat, pfyarr1)
in
gadd_val<T> (s, res)
end
(* ****** ****** *)
extern
prfun
mk_tieq3 (): tieq (S(S(S(Z))), 3)
local
var X = @[double][3](1.0, 1.0, 0.0)
var Y = @[double][3](1.0, 1.0, 0.0)
val dot = DotProduct_eval<double><S(S(S(Z)))> (mk_tieq3 () | X, Y)
val () = println! ("dot = ", dot)
in
// nothing
end
(* ****** ****** *)
// the next example given by the article can be easily solved
// using a "finally tagless" interpreter
(*
extern
fun{T:t@ype}{E:type}
Interpreter_eval {e:exp} (pf: expeq (E, e) | T): T
*)
extern
fun{T:t@ype}
Interpreter_lit (x: T): T
extern
fun{T:t@ype}
Interpreter_add (x: T, y: T): T
extern
fun{T:t@ype}
Interpreter_mul (x: T, y: T): T
implement{T}
Interpreter_lit (x) = x
implement{T}
Interpreter_add (x, y) = gadd_val<T> (x, y)
implement{T}
Interpreter_mul (x, y) = gmul_val<T> (x, y)
fun someFunction(x: double) = let
val expr = Interpreter_mul<double> (
Interpreter_add<double> (Interpreter_lit<double> (x), Interpreter_lit<double> (2.0))
, Interpreter_lit<double> (3.0))
in
println!("someFunction = ", expr)
end
val () = someFunction (3.8)
(* ****** ****** *)
(*
// AS: I'm not sure this works... the article doesn't give a full
// listing
class Literal {
public: Literal(double v) : _val(v) {}
double eval(double) const { return _val; }
private: const double _val;
};
template<class T>
class Identity {
public: T eval(T d) const { return d; }
};
template <class ExprT1,class ExprT2, class BinOp>
class BinExpr {
exprTraits<ExprT1>::expr_type _expr1;
exprTraits<ExprT2>::expr_type _expr2;
BinOp _op;
public:
BinaryExpr(ExprT1 e1, ExprT2 e2,BinOp op=BinOp())
: _expr1(e1),_expr2(e2),_op(op) {}
double eval(double d) const
{ return _op(_expr1.eval(d),_expr2.eval(d)); }
};
template <class ExprT>
UnaryExpr<ExprT,double( * )(double)>
sqrt(const ExprT& e)
{return UnaryExpr<ExprT,double( * )(double)>(e,::std::sqrt);}
template <class ExprT>
UnaryExpr<ExprT,double( * )(double)>
exp(const ExprT& e)
{ return UnaryExpr<ExprT,double( * )(double)>(e,::std::exp); }
template <class ExprT>
double integrate (ExprT e,double from,double to,size_t n)
{ double sum=0, step=(to-from)/n;
for (double i=from+step/2; i<to; i+=step)
sum+=e.eval(i);
return step*sum;
}
template <class ExprT>
double eval(ExprT e) { return e.eval(); }
void someFunction() {
Identity<double> x;
cout << integrate (x/(1.0+x),1.0,5.0,10) << endl;
}
*)
extern
fun{T:t@ype}
eval (x: &T, i: double): double
(* ****** ****** *)
//
abst@ype Tid = int
//
local
//
assume Tid = int
//
in
//
fun{} Eid (): Tid = 0
//
implement
eval<Tid> (x, i) = i
//
end
//
(* ****** ****** *)
//
abst@ype Tconst = double
//
local
//
assume Tconst = double
//
in
//
fun{} Econst (x: double): Tconst = x
//
implement
eval<Tconst> (x, i) = x
//
end
//
(* ****** ****** *)
//
abst@ype Tadd (a:t@ype, b:t@ype) = @(a, b)
//
local
//
assume Tadd (a:t@ype, b:t@ype) = @(a, b)
//
in
//
fun{a,b:t@ype}
Eadd (e0: a, e1: b): Tadd (a, b) = @(e0, e1)
//
implement(E1,E2)
eval<Tadd(E1,E2)> (x, i) =
eval<E1> (x.0, i) + eval<E2> (x.1, i)
//
end
//
(* ****** ****** *)
//
abst@ype Tdiv (a:t@ype, b:t@ype) = @(a, b)
//
local
//
assume Tdiv (a:t@ype, b:t@ype) = @(a, b)
//
in
//
fun{a,b:t@ype}
Ediv (e0: a, e1: b): Tdiv (a, b) = @(e0, e1)
//
implement(E1,E2)
eval<Tdiv(E1,E2)> (x, i) =
eval<E1> (x.0, i) / eval<E2> (x.1, i)
//
end
//
(* ****** ****** *)
fun{T:t@ype}
integrate (e: &T, from: double, to: double, n: int): double = let
var sum: double = 0.0
var step: double = (to-from) / g0int2float_int_double(n)
var i: double = from + step / 2.0
in
while (i < to) {
val v = eval<T>(e, i)
// DEBUG
// val () = println! ("value for ", i, " is ", v)
val () = sum := sum + v
val () = i := i + step
};
step * sum
end
val () = () where {
// we just copy values (the C++ version stores references)
var x = Eid ()
var e = Ediv (x, Eadd (Econst 1.0, x))
// the idea behind C++ expression templates
// seems to be that all case analysis
// is performed at compile-time
val () = println! ("integrate = ", integrate<Tdiv (Tid, Tadd (Tconst, Tid))> (e, 1.0, 5.0, 100))
}
(* ****** ****** *)
implement main0 () = ()
(* ****** ****** *)