Skip to content

Latest commit

 

History

History

Introduction

This repository contains the code for BERT-fused NMT, which is introduced in the ICLR-20 submission.

Requirements and Installation

  • PyTorch version == 1.0.0/1.1.0
  • Python version >= 3.5

Installing from source

To install fairseq from source and develop locally:

git clone https://github.com/bert-nmt/bert-nmt
cd bertnmt
pip install --editable .

Getting Started

Data Preprocessing

First, you should run Fairseq prepaer-xxx.sh to get tokenized&bped files like:

train.en train.de valid.en valid.de test.en test.de

Then you can use makedataforbert.sh to get input file for BERT model (please note that the path is correct). You can get

train.en train.de valid.en valid.de test.en test.de train.bert.en valid.bert.en test.bert.en

Then preprocess data like Fairseq:

python preprocess.py --source-lang src_lng --target-lang tgt_lng \
  --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
  --destdir destdir  --joined-dictionary --bert-model-name bert-base-uncased

Train a vanilla NMT model using Fairseq

Using data above and standard Fairseq repository, you can get a pretrained NMT model.

Train a BERT-fused NMT model

The important options we add:

        parser.add_argument('--bert-model-name', default='bert-base-uncased', type=str)
        parser.add_argument('--warmup-from-nmt', action='store_true', )
        parser.add_argument('--warmup-nmt-file', default='checkpoint_nmt.pt', )
        parser.add_argument('--encoder-bert-dropout', action='store_true',)
        parser.add_argument('--encoder-bert-dropout-ratio', default=0.25, type=float)
  1. --bert-model-name specify the BERT model name, provided in file.
  2. --warmup-from-nmt indicate you will also use a pretrained NMT model to train your BERT-fused NMT model. If you this option, we suggest you use --reset-lr-scheduler, too.
  3. --warmup-nmt-file specify the NMT model name (in your $savedir).
  4. --encoder-bert-dropout indicate you will use drop-net trick.
  5. --encoder-bert-dropout-ratio specify the ratio ($\in [0, 0.5]$) used in drop-net. This is a training script example:
#!/usr/bin/env bash
nvidia-smi

cd /yourpath/bertnmt
python3 -c "import torch; print(torch.__version__)"

src=en
tgt=de
bedropout=0.5
ARCH=transformer_s2_iwslt_de_en
DATAPATH=/yourdatapath
SAVEDIR=checkpoints/iwed_${src}_${tgt}_${bedropout}
mkdir -p $SAVEDIR
if [ ! -f $SAVEDIR/checkpoint_nmt.pt ]
then
    cp /your_pretrained_nmt_model $SAVEDIR/checkpoint_nmt.pt
fi
if [ ! -f "$SAVEDIR/checkpoint_last.pt" ]
then
warmup="--warmup-from-nmt --reset-lr-scheduler"
else
warmup=""
fi

python train.py $DATAPATH \
-a $ARCH --optimizer adam --lr 0.0005 -s $src -t $tgt --label-smoothing 0.1 \
--dropout 0.3 --max-tokens 4000 --min-lr '1e-09' --lr-scheduler inverse_sqrt --weight-decay 0.0001 \
--criterion label_smoothed_cross_entropy --max-update 150000 --warmup-updates 4000 --warmup-init-lr '1e-07' \
--adam-betas '(0.9,0.98)' --save-dir $SAVEDIR --share-all-embeddings $warmup \
--encoder-bert-dropout --encoder-bert-dropout-ratio $bedropout | tee -a $SAVEDIR/training.log

Generate

Using the generate.py to test model is the same as the Fairseq, but you should add --bert-model-name to indicate your BERT model name.

Using the interactive.py to test model is a little different from the Fairseq. You should follow this procedure:

sed -r 's/(@@ )|(@@ ?$)//g' $bpefile > $bpefile.debpe
$MOSE/scripts/tokenizer/detokenizer.perl -l $src < $bpefile.debpe > $bpefile.debpe.detok
paste -d "\n" $bpefile $bpefile.debpe.detok > $bpefile.in
cat $bpefile.in | python interactive.py  -s $src -t $tgt \
--buffer-size 1024 --batch-size 128 --beam 5 --remove-bpe  > output.log