-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmainin_save.py
377 lines (336 loc) · 15.8 KB
/
mainin_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
print 'Loading libraries...\n'
import data_mine, json, get_relevant, TextAnalyser, time # , pickle
from pattern.web import plaintext
print 'Whenever you are ready ... '
class conversation_class:
def __init__(self, user_argument):
self.user_argument = user_argument
self.mined_data = {}
self.counters = []
self.tweets = []
self.previous_counters = []
self.search_query = ''
self.result = {}
def addCounters(self, counters):
self.counters = self.counters + counters
return False
def addTweets(self, tweets):
self.tweets = self.tweets + tweets
return False
def addPreviousCounters(self, previous_counters):
self.previous_counters = self.previous_counters + previous_counters
return False
def addSearchQuery(self, search_query):
self.search_query = search_query
return False
def addReturnedResults(self, mined_data):
self.mined_data = mined_data
return False
def printReturnedResults(self):
print '\nSearch Results: \n'
index = 0
for sentence in self.mined_data:
index += 1
print '\n', str(index), ') ', sentence
return False
def printCounters(self):
print 'Counters: \n'
if len(self.counters)==0:
print '\nProbably you are right! WOW!'
return True
index = 0
for line in self.counters:
index += 1
print '\n', str(index), ') ', line.replace('\n', ' ')
if index==3:
break
return False
def printTweets(self):
print '\nTweets: \n'
index = 0
for line in self.tweets:
index += 1
print '\n', str(index), ') ', line
return False
def resultFormer(self, google, twitter):
print '\nGoogle: ', google, '\nTwitter: ', twitter, '\nMined Data: ', self.mined_data
result_google = []
for string in google:
for data in self.mined_data['Google']:
if data['text']==string:
result_google.append(data)
result_twitter = []
for string in twitter:
for data in self.mined_data['Twitter']:
if data['text']==string:
result_twitter.append(data)
self.result = { 'Error': None, 'Google': result_google, 'Twitter': result_twitter }
return self.result
def check_single_sentence(query):
temp = query.split('.')
if '' in temp:
temp.remove('')
return len(temp) < 2
def remove_duplicate(passed_list):
unique = []
for element in passed_list:
if element not in unique:
unique.append(element)
return unique
def run_multiple(raw_query, change_sentiment=True, recursing=False):
# Text Analysis ----------------------------------------------------------------------------
# if not take_raw:
# raw_query = raw_input('Enter argument: ')
# raw_query = raw_query.split('.').remove('')
print raw_query, ' Multi!!!!!'
raw_query = raw_query.split('.')
if '' in raw_query:
raw_query.remove('')
multi_mined_data = {
'Error': None,
'Google': [],
'Twitter': []
}
for sentence in raw_query:
mined_data = run(sentence, change_sentiment=change_sentiment, recursing=True, returnall=True)
# print 'Within multi: ', counters
try:
if len(mined_data['Google'])>0 or not len(mined_data['Google'])==None:
multi_mined_data['Google'] = multi_mined_data['Google'] + mined_data['Google']
except TypeError:
print 'Type Error for: ', sentence
try:
if len(mined_data['Twitter'])>0 or not len(mined_data['Twitter'])==None:
multi_mined_data['Twitter'] = multi_mined_data['Twitter'] + mined_data['Twitter']
except TypeError:
print 'Type Error for: ', sentence
conversation_multi = conversation_class(''.join(raw_query))
conversation_multi.addReturnedResults(multi_mined_data)
raw_query_multi = ''.join(raw_query)
if '..' in raw_query_multi:
raw_query_multi.remove('..')
if '...' in raw_query_multi:
raw_query_multi.remove('...')
if '....' in raw_query_multi:
raw_query_multi.remove('....')
if '.....' in raw_query_multi:
raw_query_multi.remove('.....')
if '......' in raw_query_multi:
raw_query_multi.remove('......')
print '\nRaw query multi: ', raw_query_multi
# return 0
print 'Combining counters...\n'
# TODO: combine counters before passing it to get_relevant
# counters = get_relevant.get_array(sentences, raw_query, google_range)
google_range = { 'start': 0, 'end': len(conversation_multi.mined_data['Google']) }
twitter_range = { 'start': 0, 'end': len(conversation_multi.mined_data['Twitter']) }
google_text = [iterator['text'] for iterator in conversation_multi.mined_data['Google']]
twitter_text = [iterator['text'] for iterator in conversation_multi.mined_data['Twitter']]
similarity_threshold = {
'Google': 0.2,
'Twitter': 0.1
}
try:
google_counters = get_relevant.get_array(google_text, conversation_multi.user_argument, google_range, similarity_threshold['Google'])
except (UnicodeDecodeError, UnicodeEncodeError):
print '\nUnicode exception at google_counters(similarity) !, trying utf-8 encoding'
def force_to_unicode(text):
return text if isinstance(text, unicode) else text.decode('utf8')
google_text = [force_to_unicode(iterator) for iterator in google_text]
google_counters = get_relevant.get_array(google_text, conversation_multi.user_argument, google_range, similarity_threshold['Google'])
try:
twitter_counters = get_relevant.get_array(twitter_text, conversation_multi.user_argument, twitter_range, similarity_threshold['Twitter'])
except (UnicodeDecodeError, UnicodeEncodeError):
print '\nUnicode exception at twtter_counters(similarity) !, trying utf-8 encoding'
def force_to_unicode(text):
return text if isinstance(text, unicode) else text.decode('utf8')
twitter_text = [force_to_unicode(iterator) for iterator in twitter_text]
twitter_counters = get_relevant.get_array(twitter_text, conversation_multi.user_argument, twitter_range, similarity_threshold['Twitter'])
conversation_multi.addCounters(google_counters)
conversation_multi.addTweets(twitter_counters)
conversation_multi.counters = remove_duplicate(conversation_multi.counters)
google_counters = conversation_multi.counters
rerun = conversation_multi.printCounters()
# if rerun and not recursing:
# print '\nRerunning as counters not up to the mark!'
# run(conversation.user_argument, change_sentiment=False, recursing=True) # put return here!
# return
f = open('previous_results.json', 'w')
if len(google_counters) > 3:
google_counters_array = []
index = 0
for google in conversation_multi.mined_data['Google']:
for counter_text in google_counters:
if plaintext(google['text']).encode('utf-8') == counter_text:
google_counters_array.append(google)
index += 1
if index>=3:
break
json.dump(google_counters_array, f)
else:
google_counters_array = []
for google in conversation_multi.mined_data['Google']:
for counter_text in google_counters:
if plaintext(google['text']).encode('utf-8') == counter_text:
google_counters_array.append(google)
json.dump(google_counters_array, f)
f.close()
'''
f = open('conversation.pkl', 'w')
src = StringIO()
p = pickle.Pickler(src)
# pickle.dump(conversation, f, pickle.HIGHEST_PROTOCOL)
f.close()
'''
print '\n\nDone:)'
if len(conversation_multi.counters)<=3:
return conversation_multi.counters
else:
return conversation_multi.counters[0:3]
def run(raw_query, change_sentiment=True, recursing=False, returnall=False):
# Text Analysis ----------------------------------------------------------------------------
# if not take_raw:
# raw_query = raw_input('Enter argument: ')
print raw_query
if check_single_sentence(raw_query)==False:
return run_multiple(raw_query, change_sentiment=change_sentiment, recursing=recursing)
conversation = conversation_class(raw_query)
print 'Starting text analysis...\n'
# search_query_array = extract_info.noun_phrases(raw_query)
search_query, isMeaning = TextAnalyser.queryGenerator(raw_query, change_sentiment)
search_query = str(search_query)
# search_query = 'bitcoins are underrated'
conversation.addSearchQuery(search_query)
# If user doesn't ask for meaning ----------------------------------------------------------
if not isMeaning:
# Mining information -------------------------------------------------------------------
print 'Mining information off the web...\n'
mined_data = data_mine.get_info(search_query)
if mined_data['Error']:
print mined_data['Error']
return None
# Encode mined data for further use
for engine in ['Google', 'Twitter']:
index=0
for data in mined_data[engine]:
try:
data['text'] = data['text'].encode('ascii')
data['url'] = data['url'].encode('ascii')
data['title'] = data['title'].encode('ascii')
# data['url'] = [data_single.encode('ascii') for data_single in data['url']]
# data['title'] = [data_single.encode('ascii') for data_single in data['title']]
except (UnicodeEncodeError, UnicodeDecodeError):
data['text'] = data['text'].encode('utf-8')
data['url'] = data['url'].encode('utf-8')
data['title'] = data['title'].encode('utf-8')
# data['text'] = [data_single.encode('utf-8') for data_single in data['text']]
# data['url'] = [data_single.encode('utf-8') for data_single in data['url']]
# data['title'] = [data_single.encode('utf-8') for data_single in data['title']]
finally:
mined_data[engine][index] = data
index += 1
# Storing the mined information ---------------------------------------------------------
print 'Done mining, saving/retrieving changes...\n'
conversation.addReturnedResults(mined_data)
fG = open('google_results.json', 'w')
fT = open('twitter_results.json', 'w')
json.dump(mined_data["Google"], fG)
json.dump(mined_data["Twitter"], fT)
fG.close()
fT.close()
# Opening the mined information ---------------------------------------------------------
fG = open('google_results.json', 'r+')
fT = open('twitter_results.json', 'r+')
# sentences = json.load(fG)
google_results = json.load(fG)
twitter_results = json.load(fT)
fG.close()
fT.close()
f = open('previous_results.json', 'r+')
try:
conversation.addPreviousCounters(json.load(f))
except (ValueError):
conversation.addPreviousCounters([])
f.close()
# Calculating similarity within texts ---------------------------------------------------
print 'Generating counters...\n'
# TODO: combine counters before passing it to get_relevant
# counters = get_relevant.get_array(sentences, raw_query, google_range)
for x in conversation.previous_counters:
if x not in conversation.mined_data['Google']:
conversation.mined_data['Google'].append(x)
google_range = { 'start': 0, 'end': len(conversation.mined_data['Google']) }
twitter_range = { 'start': 0, 'end': len(conversation.mined_data['Twitter']) }
# combined = counters + conversation.previous_counters
# print '\nConversation mined data: ', conversation.mined_data
# print '\nMined data: ', mined_data
google_text = [iterator['text'] for iterator in conversation.mined_data['Google']]
twitter_text = [iterator['text'] for iterator in conversation.mined_data['Twitter']]
similarity_threshold = {
'Google': 0.6,
'Twitter': 0.3
}
try:
google_counters = get_relevant.get_array(google_text, conversation.user_argument, google_range, similarity_threshold['Google'])
except (UnicodeDecodeError, UnicodeEncodeError):
print '\nUnicode exception at google_counters(similarity) !, trying utf-8 encoding'
def force_to_unicode(text):
return text if isinstance(text, unicode) else text.decode('utf8')
google_text = [force_to_unicode(iterator) for iterator in google_text]
google_counters = get_relevant.get_array(google_text, conversation.user_argument, google_range, similarity_threshold['Google'])
try:
twitter_counters = get_relevant.get_array(twitter_text, conversation.user_argument, twitter_range, similarity_threshold['Twitter'])
except (UnicodeDecodeError, UnicodeEncodeError):
print '\nUnicode exception at twtter_counters(similarity) !, trying utf-8 encoding'
def force_to_unicode(text):
return text if isinstance(text, unicode) else text.decode('utf8')
twitter_text = [force_to_unicode(iterator) for iterator in twitter_text]
twitter_counters = get_relevant.get_array(twitter_text, conversation.user_argument, twitter_range, similarity_threshold['Twitter'])
conversation.addCounters(google_counters)
conversation.addTweets(twitter_counters)
conversation.counters = remove_duplicate(conversation.counters)
google_counters = conversation.counters
rerun = conversation.printCounters()
if rerun and not recursing:
print '\nRerunning as counters not up to the mark!'
run(conversation.user_argument, change_sentiment=False, recursing=True)
return
f = open('previous_results.json', 'w')
if len(google_counters) > 3:
google_counters_array = []
index = 0
for google in conversation.mined_data['Google']:
for counter_text in google_counters:
if plaintext(google['text']).encode('utf-8') == counter_text:
google_counters_array.append(google)
index += 1
if index>=3:
break
json.dump(google_counters_array, f)
else:
google_counters_array = []
for google in conversation.mined_data['Google']:
for counter_text in google_counters:
if plaintext(google['text']).encode('utf-8') == counter_text:
google_counters_array.append(google)
json.dump(google_counters_array, f)
f.close()
'''
f = open('conversation.pkl', 'w')
src = StringIO()
p = pickle.Pickler(src)
# pickle.dump(conversation, f, pickle.HIGHEST_PROTOCOL)
f.close()
'''
else:
print search_query
print '\n\nDone:)'
return_result = conversation.resultFormer(conversation.counters, conversation.tweets)
print return_result
if returnall==False:
if len(conversation.counters)<=3:
return {'Google': conversation.counters, 'Twitter': conversation.tweets, 'Error': None}
else:
return {'Google': conversation.counters[0:3], 'Twitter': conversation.tweets, 'Error': None}
else:
return conversation.mined_data