forked from miking-lang/miking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipopt.mc
602 lines (532 loc) · 20 KB
/
ipopt.mc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/-
Miking interface to the IPOPT constrained Non-Linear Program (NLP) solver.
@see <https://coin-or.github.io/Ipopt/index.html> for the IPOPT documentation.
-/
include "math.mc"
include "tensor.mc"
include "common.mc"
type IpoptNLP -- Constrained Non-Linear Program
type IpoptApplicationReturnStatus -- Internal representation of return status
type Vector = Tensor[Float]
-- Callback function to evaluate the objective function f(x). The function
-- argument `x` is the values of the variables.
type IpoptEvalF = Vector -> Float
-- Callback function to evaluate the gradient 𝛁f(x) of the objective
-- function. The function arguments are:
-- - `x`, the values of the variables,
-- - `grad_f`, a vector for storing the values of 𝛁f(x), in the same order
-- as `x`. I.e. `grad_f[i]` should hold the value of the gradient
-- of f(x) with respect to `x[i]`.
type IpoptEvalGradF = Vector -> Vector -> ()
-- Callback function to evaluate the constraints g(x). The function arguments
-- are:
-- - `x`, the values of the variables,
-- - `g`, a vector for storing the value of g(x).
type IpoptEvalG = Vector -> Vector -> ()
-- Encodes the structure of a sparse matrix. The tuple `(i, j)` in position `k`
-- associates the matrix element `m[i, j]` with the sequence element `a[k]`. If
-- `(i, j)` appears multiple times in the structure sequence, `m[i, j]` is
-- associated with the sum of these elements in `a`. Matrix elements missing
-- from the structure sequence are assumed to be zero.
-- @see <https://coin-or.github.io/Ipopt/IMPL.html#TRIPLET> for documentation on
-- the triplet format.
type IpoptStructure = [(Int, Int)]
-- Callback function to evaluate the Jacobian 𝛁g(x)^T of the constraints. The
-- function arguments are:
-- - `x`, the values of the variables,
-- - `jac_g`, a vector for storing the non-zero values of 𝛁g(x)^T, where
-- `jac_g` assumes some pre-defined structure.
type IpoptEvalJacG = Vector -> Vector -> ()
-- Callback function to evaluate the Hessian
-- σ𝛁^2f(x_k) + Σ_i[λ_i𝛁^2g_i(x_k)]
-- of the Lagrangian. The function arguments are:
-- - `sigma`, the factor σ in front of the objective term,
-- - `x`, the values of the variables,
-- - `lambda`, the values of the constraint multiplier λ,
-- - `h`, a vector for storing the non-zero values of the Hessian, where `h`
-- assumes some pre-defined structure. This Hessian is symmetric and
-- only the lower diagonal entries must be specified.
type IpoptEvalH = Float -> Vector -> Vector -> Vector -> ()
type IpoptReturnStatus
con SolveSucceeded : () -> IpoptReturnStatus
con SolvedToAcceptableLevel : () -> IpoptReturnStatus
con InfeasibleProblemDetected : () -> IpoptReturnStatus
con SearchDirectionBecomesTooSmall : () -> IpoptReturnStatus
con DivergingIterates : () -> IpoptReturnStatus
con UserRequestedStop : () -> IpoptReturnStatus
con FeasiblePointFound : () -> IpoptReturnStatus
con MaximumIterationsExceeded : () -> IpoptReturnStatus
con RestorationFailed : () -> IpoptReturnStatus
con ErrorInStepComputation : () -> IpoptReturnStatus
con MaximumCpuTimeExceeded : () -> IpoptReturnStatus
con NotEnoughDegreesOfFreedom : () -> IpoptReturnStatus
con InvalidProblemDefinition : () -> IpoptReturnStatus
con InvalidOption : () -> IpoptReturnStatus
con InvalidNumberDetected : () -> IpoptReturnStatus
con UnrecoverableException : () -> IpoptReturnStatus
con NonIpoptExceptionThrown : () -> IpoptReturnStatus
con InsufficientMemory : () -> IpoptReturnStatus
con InternalError : () -> IpoptReturnStatus
external externalIpoptApplicationReturnStatusRetcode
: IpoptApplicationReturnStatus -> Int
let _rctoreturnstatus = lam rc : Int.
if eqi rc 0 then SolveSucceeded ()
else if eqi rc 1 then SolvedToAcceptableLevel ()
else if eqi rc 2 then InfeasibleProblemDetected ()
else if eqi rc 3 then SearchDirectionBecomesTooSmall ()
else if eqi rc 4 then DivergingIterates ()
else if eqi rc 5 then UserRequestedStop ()
else if eqi rc 6 then FeasiblePointFound ()
else if eqi rc (negi 1) then MaximumIterationsExceeded ()
else if eqi rc (negi 2) then RestorationFailed ()
else if eqi rc (negi 3) then ErrorInStepComputation ()
else if eqi rc (negi 4) then MaximumCpuTimeExceeded ()
else if eqi rc (negi 10) then NotEnoughDegreesOfFreedom ()
else if eqi rc (negi 11) then InvalidProblemDefinition ()
else if eqi rc (negi 12) then InvalidOption ()
else if eqi rc (negi 13) then InvalidNumberDetected ()
else if eqi rc (negi 100) then UnrecoverableException ()
else if eqi rc (negi 101) then NonIpoptExceptionThrown ()
else if eqi rc (negi 102) then InsufficientMemory ()
else if eqi rc (negi 199) then InternalError ()
else error "Ipopt._rctoreturnstatus: Unknown return code"
external externalIpoptCreateNLP
: IpoptEvalF ->
IpoptEvalGradF ->
IpoptEvalG ->
IpoptStructure ->
IpoptEvalJacG ->
IpoptStructure ->
IpoptEvalH ->
Vector ->
Vector ->
Vector ->
Vector ->
IpoptNLP
type IpoptCreateNLPArg = {
-- Callback function to evaluate objective function.
evalF : IpoptEvalF,
-- Callback function to evaluate the gradient of the objective function.
evalGradF : IpoptEvalGradF,
-- Callback function to evaluate the constraint function.
evalG : IpoptEvalG,
-- Structure of the constraint Jacobian.
jacGStructure : IpoptStructure,
-- Callback function to evalute the Jacobian of the constraint function
evalJacG : IpoptEvalJacG,
-- Structure of the Hessian of the Lagrangian.
hStructure : IpoptStructure,
-- Callback function to evaluate the Hessian of the Lagrangian.
evalH : IpoptEvalH,
-- Lower bounds on the variables xL_k.
lb : Vector,
-- Upper bounds on the variables xU_k.
ub : Vector,
-- Lower bounds on the constraints gL_i.
constraintsLb : Vector,
-- Upper bounds on the constraints gU_i.
constraintsUb : Vector
}
-- Creates a constrained NLP:
-- min_x[f(x)] s.t. xL_k ≤ x_k ≤ xU_k and gL_i ≤ g_i(x) ≤ gU_i.
let ipoptCreateNLP : IpoptCreateNLPArg -> IpoptNLP =
lam arg.
if
forAll
(flip tensorHasRank 1)
[arg.lb, arg.ub, arg.constraintsLb, arg.constraintsUb]
then
let nx = tensorSize arg.lb in
let ng = tensorSize arg.constraintsLb in
if
and
(tensorHasSameShape arg.lb arg.ub)
(tensorHasSameShape arg.constraintsLb arg.constraintsUb)
then
-- copy over constraints to carrays
let lb = tensorCreateCArrayFloat [nx] (tensorGetExn arg.lb) in
let ub = tensorCreateCArrayFloat [nx] (tensorGetExn arg.ub) in
let constraintsLb =
tensorCreateCArrayFloat [ng] (tensorGetExn arg.constraintsLb)
in
let constraintsUb =
tensorCreateCArrayFloat [ng] (tensorGetExn arg.constraintsUb)
in
externalIpoptCreateNLP
arg.evalF
arg.evalGradF
arg.evalG
arg.jacGStructure
arg.evalJacG
arg.hStructure
arg.evalH
lb
ub
constraintsLb
constraintsUb
else error "Invalid Argument: ipoptCreateNLP"
else error "Invalid Argument: ipoptCreateNLP"
external externalIpoptAddStrOption ! : IpoptNLP -> String -> String -> ()
-- `ipoptAddStrOption p key val` sets the option `key` to the `String` value
-- `val` in the NLP `p`. @see <https://coin-or.github.io/Ipopt/OPTIONS.html> for
-- a summary of options.
let ipoptAddStrOption : IpoptNLP -> String -> String -> ()
= lam p. lam key. lam val. externalIpoptAddStrOption p key val
external externalIpoptAddNumOption ! : IpoptNLP -> String -> Float -> ()
-- As `ipoptAddStrOption`, but for `Float` values.
let ipoptAddNumOption : IpoptNLP -> String -> Float -> ()
= lam p. lam key. lam val. externalIpoptAddNumOption p key val
external externalIpoptAddIntOption ! : IpoptNLP -> String -> Int -> ()
-- As `ipoptAddStrOption`, but for `Int` values.
let ipoptAddIntOption : IpoptNLP -> String -> Int -> ()
= lam p. lam key. lam val. externalIpoptAddIntOption p key val
external externalIpoptSolve !
: IpoptNLP -> Vector -> (IpoptApplicationReturnStatus, Float)
-- `solve p x` tries to solve the constrained NLP `p` with initial values `x`.
-- The function arguments are:
-- - `p`, the constrained NLP,
-- - `x`, Initial values of the variables. Will hold the optimal solution after
-- calling `solve`.
-- Returns: The tuple tuple `(rs, f)`, where `rs` is the return status and `f`
-- is the final value of the objective function.
let ipoptSolve : IpoptNLP -> Vector -> (IpoptReturnStatus, Float)
= lam p. lam x.
match externalIpoptSolve p x with (r, f) then
(_rctoreturnstatus (externalIpoptApplicationReturnStatusRetcode r), f)
else never
mexpr
let tget = tensorGetExn in
let tset = tensorSetExn in
let tcreate = tensorCreateCArrayFloat in
let testSolve = lam p. lam x.
utest
match ipoptSolve p x with (SolveSucceeded _, obj) then
print "\nObjective: ";
printLn (float2string obj);
printLn "Solution:";
printLn (tensor2string float2string x);
printLn "";
true
else false
with true
in
()
in
utest
-- Example problem from https://coin-or.github.io/Ipopt/
-- min_x f(x), where f(x) = x[0]x[3](x[0] + x[1] + x[2]) + x[2],
-- s.t.
-- x[0]x[1]x[2]x[3] ≥ 25,
-- x[0]^2 + x[1]^2 + x[2]^2 + x[3]^2 = 40,
-- 1 ≤ x[0], x[1], x[2], x[3] ≤ 5.
let evalF = lam x.
let x0 = tget x [0] in
let x1 = tget x [1] in
let x2 = tget x [2] in
let x3 = tget x [3] in
addf (mulf x0 (mulf x3 (addf x0 (addf x1 x2)))) x2
in
let evalGradF = lam x. lam gradF.
let x0 = tget x [0] in
let x1 = tget x [1] in
let x2 = tget x [2] in
let x3 = tget x [3] in
tset gradF [0] (addf (mulf x0 x3) (mulf x3 (addf x0 (addf x1 x2))));
tset gradF [1] (mulf x0 x3);
tset gradF [2] (addf (mulf x0 x3) 1.);
tset gradF [3] (mulf x0 (addf x0 (addf x1 x2)));
()
in
let evalG = lam x. lam g.
let x0 = tget x [0] in
let x1 = tget x [1] in
let x2 = tget x [2] in
let x3 = tget x [3] in
tset g [0] (mulf x0 (mulf x1 (mulf x2 x3)));
tset g [1] (addf (mulf x0 x0) (addf (mulf x1 x1)
(addf (mulf x2 x2) (mulf x3 x3))));
()
in
let jacGStructure =
[ (0, 0)
, (0, 1)
, (0, 2)
, (0, 3)
, (1, 0)
, (1, 1)
, (1, 2)
, (1, 3) ]
in
let evalJacG = lam x. lam jacG.
let x0 = tget x [0] in
let x1 = tget x [1] in
let x2 = tget x [2] in
let x3 = tget x [3] in
tset jacG [0] (mulf x1 (mulf x2 x3)); -- (0, 0)
tset jacG [1] (mulf x0 (mulf x2 x3)); -- (0, 1)
tset jacG [2] (mulf x0 (mulf x1 x3)); -- (0, 2)
tset jacG [3] (mulf x0 (mulf x1 x2)); -- (0, 3)
tset jacG [4] (mulf 2. x0); -- (1, 0)
tset jacG [5] (mulf 2. x1); -- (1, 1)
tset jacG [6] (mulf 2. x2); -- (1, 2)
tset jacG [7] (mulf 2. x3); -- (1, 3)
()
in
let hStructure =
[ (0, 0)
, (1, 0)
, (1, 1)
, (2, 0)
, (2, 1)
, (2, 2)
, (3, 0)
, (3, 1)
, (3, 2)
, (3, 3) ]
in
let evalH = lam sigma. lam x. lam lambda. lam h.
let x0 = tget x [0] in
let x1 = tget x [1] in
let x2 = tget x [2] in
let x3 = tget x [3] in
let l0 = tget lambda [0] in
let l1 = tget lambda [1] in
tset h [0] (mulf sigma (mulf 2. x3));
tset h [1] (mulf sigma x3);
tset h [2] 0.;
tset h [3] (mulf sigma x3);
tset h [4] 0.;
tset h [5] 0.;
tset h [6] (mulf sigma (addf (mulf 2. x0) (addf x1 x2)));
tset h [7] (mulf sigma x0);
tset h [8] (mulf sigma x0);
tset h [9] 0.;
tset h [1] (addf (tget h [1]) (mulf l0 (mulf x2 x3)));
tset h [3] (addf (tget h [3]) (mulf l0 (mulf x1 x3)));
tset h [4] (addf (tget h [4]) (mulf l0 (mulf x0 x3)));
tset h [6] (addf (tget h [6]) (mulf l0 (mulf x1 x2)));
tset h [7] (addf (tget h [7]) (mulf l0 (mulf x0 x2)));
tset h [8] (addf (tget h [8]) (mulf l0 (mulf x0 x1)));
tset h [0] (addf (tget h [0]) (mulf l1 2.));
tset h [2] (addf (tget h [2]) (mulf l1 2.));
tset h [5] (addf (tget h [5]) (mulf l1 2.));
tset h [9] (addf (tget h [9]) (mulf l1 2.));
()
in
let lb = tensorOfSeqExn tcreate [4] [1., 1., 1., 1.] in
let ub = tensorOfSeqExn tcreate [4] [5., 5., 5., 5.] in
let constraintsLb = tensorOfSeqExn tcreate [2] [25., 40.] in
let constraintsUb = tensorOfSeqExn tcreate [2] [inf, 40.] in
let p = ipoptCreateNLP {
evalF = evalF,
evalGradF = evalGradF,
evalG = evalG,
jacGStructure = jacGStructure,
evalJacG = evalJacG,
hStructure = hStructure,
evalH = evalH,
lb = lb,
ub = ub,
constraintsLb = constraintsLb,
constraintsUb = constraintsUb
} in
ipoptAddNumOption p "tol" 3.82e-6;
ipoptAddStrOption p "mu_strategy" "adaptive";
ipoptAddStrOption p "derivative_test" "second-order";
let x = tensorOfSeqExn tcreate [4] [1., 5., 5., 1.] in
testSolve p x;
-- Find consistent initial values for a pendulum model expressed in Carteisan
-- coordinates.
-- the DAE is as follows:
-- f1 = x1'' - x1 x3
-- f2 = x2'' - x2 x3 + 1
-- f3 = x1^2 + x2^2 - 1^2.
--
-- We augment this DAE with the last equation, the algebraic constraint,
-- differentiated twice:
-- f3' = 2x1'x2 + 2x'2x1
-- f3'' = 2x1''x2 + 2x''2x1 + 2x1'x2' + 2x'2x1'.
--
-- From this we form the objective function
-- f(x) = f1^2 + f2^2 + f3^2 + f3'^2 + f3''^2.
--
-- We add the following constraints:
-- x1 = sin(pi/4) and x2 ≤ 0
-- helper functions to more easily reuse output from mathematica
let plus = foldl1 addf in
let times = foldl1 mulf in
let power = lam arg.
match arg with [base, exp] then pow base exp
else never
in
let rational = foldl1 divf in
let evalF = lam v.
let x = tget v [0] in
let dx = tget v [1] in
let ddx = tget v [2] in
let y = tget v [3] in
let dy = tget v [4] in
let ddy = tget v [5] in
let z = tget v [6] in
plus [power [plus [times [2., power [dx, 2.]], times[2., power [dy, 2.]], times [2., ddx, x], times [2., ddy, y]], 2.], power [plus [times [2., dx, x], times [2., dy, y]], 2.], power [plus [negf 1., power [x, 2.], power [y, 2.]], 2.], power [plus [ddx, times [negf 1., x, z]], 2.], power [plus [1., ddy, times [negf 1., y, z]], 2.]]
in
let evalGradF = lam v. lam gradF.
let x = tget v [0] in
let dx = tget v [1] in
let ddx = tget v [2] in
let y = tget v [3] in
let dy = tget v [4] in
let ddy = tget v [5] in
let z = tget v [6] in
tset gradF [0] (plus [times [8., ddx, plus [power [dx, 2.], power [dy, 2.], times [ddx, x], times [ddy, y]]], times [8., dx, plus [times [dx, x], times [dy, y]]], times [4., x, plus [negf 1., power [x, 2.], power [y, 2.]]], times [2., z, plus [times [negf 1., ddx], times [x, z]]]]);
tset gradF [1] (times [8., plus [times [2., power [dx, 3.]], times [dy, x, y], times [dx, plus [times [2., power [dy, 2.]], times [2., ddx, x], power [x, 2.], times [2., ddy, y]]]]]);
tset gradF [2] (times [2., plus [ddx, times [4., x, plus [power [dx, 2.], power [dy, 2.], times [ddx, x], times [ddy, y]]], times [negf 1., x, z]]]);
tset gradF [3] (plus [times [8., ddy, plus [power [dx, 2.], power [dy, 2.], times [ddx, x], times [ddy, y]]], times [8., dy, plus [times [dx, x], times [dy, y]]], times [4., y, plus [negf 1., power [x, 2.], power [y, 2.]]], times [negf 2., z, plus [1., ddy, times [negf 1., y, z]]]]);
tset gradF [4] (times [8., plus [times [2., power [dx, 2.], dy], times [dx, x, y], times [dy, plus [times [2., power [dy, 2.]], times [2., ddx, x], times [2., ddy, y], power [y, 2.]]]]]);
tset gradF [5] (times [2., plus [1., ddy, times [4., y, plus [power [dx, 2.], power [dy, 2.], times [ddx, x], times [ddy, y]]], times [negf 1., y, z]]]);
tset gradF [6] (plus [times [2., x, plus [times [negf 1., ddx], times [x, z]]], times [negf 2., y, plus [1., ddy, times [negf 1., y, z]]]]);
()
in
let evalG = lam v. lam g.
let x = tget v [0] in
let dx = tget v [1] in
let ddx = tget v [2] in
let y = tget v [3] in
let dy = tget v [4] in
let ddy = tget v [5] in
let z = tget v [6] in
tset g [0] (plus [times [negf 1., power [2., rational [negf 1., 2.]]], x]);
tset g [1] y;
()
in
let jacGStructure =
[(0, 0), (1, 3)]
in
let evalJacG = lam. lam jacG.
tset jacG [0] 1.;
tset jacG [1] 1.;
()
in
let hStructure =
[
(0, 0),
(1, 0),
(2, 0),
(3, 0),
(4, 0),
(5, 0),
(6, 0),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
-- (6, 1) is zero
(2, 2),
(3, 2),
(4, 2),
(5, 2),
(6, 2),
(3, 3),
(4, 3),
(5, 3),
(6, 3),
(4, 4),
(5, 4),
-- (6, 4) is zero
(5, 5),
(6, 5),
(6, 6)
]
in
let evalH = lam sigma. lam v. lam. lam h.
let x = tget v [0] in
let dx = tget v [1] in
let ddx = tget v [2] in
let y = tget v [3] in
let dy = tget v [4] in
let ddy = tget v [5] in
let z = tget v [6] in
-- (0, 0)
tset h [0] (times [2., plus [negf 2., times [4., power [ddx, 2.]], times [4., power [dx, 2.]], times [6., power [x, 2.]], times [2., power [y, 2.]], power [z, 2.]]]);
-- (1, 0)
tset h [1] (times [8., plus [times [2., ddx, dx], times [2., dx, x], times [dy, y]]]);
-- (2, 0)
tset h [2] (plus [times [8., power [dx, 2.]], times [8., power [dy, 2.]], times [16., ddx, x], times [8., ddy, y], times [negf 2., z]]);
-- (3, 0)
tset h [3] (times [8., plus [times [ddx, ddy], times [dx, dy], times [x, y]]]);
-- (4, 0)
tset h [4] (times [8., plus [times [2., ddx, dy], times [dx, y]]]);
-- (5, 0)
tset h [5] (times [8., ddx, y]);
-- (6, 0)
tset h [6] (plus [times [negf 2., ddx], times [4., x, z]]);
-- (1, 1)
tset h [7] (times [8., plus [times [6., power [dx, 2.]], times [2., power [dy, 2.]], times [2., ddx, x], power [x, 2.], times [2., ddy, y]]]);
-- (2, 1)
tset h [8] (times [16., dx, x]);
-- (3, 1)
tset h [9] (times [8., plus [times [2., ddy, dx], times [dy, x]]]);
-- (4, 1)
tset h [10] (times [8., plus [times [4., dx, dy], times [x, y]]]);
-- (5, 1)
tset h [11] (times [16., dx, y]);
-- (6, 1) is zero
-- (2, 2)
tset h [12] (plus [2., times [8., power [x, 2.]]]);
-- (3, 2)
tset h [13] (times [8., ddy, x]);
-- (4, 2)
tset h [14] (times [16., dy, x]);
-- (5, 2)
tset h [15] (times [8., x, y]);
-- (6, 2)
tset h [16] (times [negf 2., x]);
-- (3, 3)
tset h [17] (times [2., plus [negf 2., times [4., power [ddy, 2.]], times [4., power [dy, 2.]], times [2., power [x, 2.]], times [6., power [y, 2.]], power [z, 2.]]]);
-- (4, 3)
tset h [18] (times [8., plus [times [2., ddy, dy], times [dx, x], times [2., dy, y]]]);
-- (5, 3)
tset h [19] (plus [times [8., power [dx, 2.]], times [8., power [dy, 2.]], times [8., ddx, x], times [16., ddy, y], times [negf 2., z]]);
-- (6, 3)
tset h [20] (times [negf 2., plus [1., ddy, times [negf 2., y, z]]]);
-- (4, 4)
tset h [21] (times [8., plus [times [2., power [dx, 2.]], times [6., power [dy, 2.]], times [2., ddx, x], times [2., ddy, y], power [y, 2.]]]);
-- (5, 4)
tset h [22] (times [16., dy, y]);
-- (6, 4) is zero
-- (5, 5)
tset h [23] (plus [2., times [8., power [y, 2.]]]);
-- (6, 5)
tset h [24] (times [negf 2., y]);
-- (6, 6)
tset h [25] (times [2., plus [power [x, 2.], power [y, 2.]]]);
tensorMapInplace (mulf sigma) h;
()
in
let lb = tcreate [7] (lam. negf inf) in
let ub = tcreate [7] (lam. inf) in
let constraintsLb = tensorOfSeqExn tcreate [2] [0., negf inf] in
let constraintsUb = tensorOfSeqExn tcreate [2] [0., 0.] in
let p = ipoptCreateNLP {
evalF = evalF,
evalGradF = evalGradF,
evalG = evalG,
jacGStructure = jacGStructure,
evalJacG = evalJacG,
hStructure = hStructure,
evalH = evalH,
lb = lb,
ub = ub,
constraintsLb = constraintsLb,
constraintsUb = constraintsUb
} in
ipoptAddNumOption p "tol" 3.82e-6;
ipoptAddStrOption p "mu_strategy" "adaptive";
ipoptAddStrOption p "derivative_test" "second-order";
let x = tcreate [7] (lam. 0.) in
tset x [0] (sin (divf pi 4.));
tset x [3] (mulf (negf 1.) (cos (divf pi 4.)));
testSolve p x
with () in
()