diff --git a/.github/workflows/deploy.yml b/.github/workflows/deploy.yml
new file mode 100644
index 0000000..015bea1
--- /dev/null
+++ b/.github/workflows/deploy.yml
@@ -0,0 +1,50 @@
+name: CI/CD Pipeline
+
+on:
+ push:
+ branches:
+ - main
+
+jobs:
+ build:
+ runs-on: ubuntu-latest
+ steps:
+ - name: Checkout Code
+ uses: actions/checkout@v2
+
+ - name: Set up Python
+ uses: actions/setup-python@v2
+ with:
+ python-version: '3.8'
+
+ - name: Install Dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install -r requirements.txt
+
+ - name: Lint Code
+ run: pylint app/**/*.py
+
+ - name: Run Unit Tests
+ run: pytest tests/
+
+ - name: Set up Docker Buildx
+ uses: docker/setup-buildx-action@v1
+
+ - name: Build and Push Docker Image
+ uses: docker/build-push-action@v2
+ with:
+ context: .
+ tags: user/repository:latest
+ push: true
+
+ deploy:
+ needs: build
+ runs-on: ubuntu-latest
+ steps:
+ - name: Deploy to Kubernetes
+ uses: azure/k8s-deploy@v1
+ with:
+ manifests: |
+ deployment/kubernetes/deployment.yml
+ deployment/kubernetes/service.yml
diff --git a/README.md b/README.md
index bb60efb..c8606e8 100644
--- a/README.md
+++ b/README.md
@@ -126,6 +126,45 @@ For hyperparameter tuning, **Optuna** has been integrated to provide automated e
- **🔍 Explainability**: SHAP and LIME explainability metrics are added to the evaluation process, providing insights into model behavior.
- **📜 Logging**: Centralized logging using **ELK Stack** (Elasticsearch, Logstash, Kibana).
+## 🚀 Cloud Deployment Instructions (AWS)
+
+To deploy the LLM Alignment Assistant on **AWS**, you can utilize **Elastic Kubernetes Service (EKS)** or **AWS Sagemaker** for model training:
+
+1. **AWS Elastic Kubernetes Service (EKS)**:
+ - Create an EKS cluster using AWS CLI or the console.
+ - Apply the Kubernetes deployment files:
+ ```bash
+ kubectl apply -f deployment/kubernetes/deployment.yml
+ kubectl apply -f deployment/kubernetes/service.yml
+ ```
+ - Configure the **Horizontal Pod Autoscaler (HPA)** to ensure scalability:
+ ```bash
+ kubectl apply -f deployment/kubernetes/hpa.yml
+ ```
+
+2. **AWS Sagemaker for Model Training**:
+ - Modify the `training/fine_tuning.py` to integrate with AWS Sagemaker.
+ - Use the Sagemaker Python SDK to launch a training job:
+ ```python
+ import sagemaker
+ from sagemaker.pytorch import PyTorch
+
+ role = "arn:aws:iam::your-account-id:role/service-role/AmazonSageMaker-ExecutionRole-2023"
+
+ pytorch_estimator = PyTorch(
+ entry_point='training/fine_tuning.py',
+ role=role,
+ instance_count=1,
+ instance_type='ml.p2.xlarge',
+ framework_version='1.8.0',
+ py_version='py3'
+ )
+
+ pytorch_estimator.fit({'training': 's3://your-bucket-name/training-data'})
+ ```
+ - Ensure IAM roles and permissions are properly set for accessing **S3** and **Sagemaker**.
+
+
## 🚀 Future Work
- **🌍 Multi-Language Support**: Expand the LLM's training to support multiple languages.
diff --git a/app/auth.py b/app/auth.py
new file mode 100644
index 0000000..7bbc73c
--- /dev/null
+++ b/app/auth.py
@@ -0,0 +1,67 @@
+# User Authentication using Flask-Login
+
+from flask import Flask, render_template, redirect, url_for, request, flash
+from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user
+from werkzeug.security import generate_password_hash, check_password_hash
+
+app = Flask(__name__)
+app.secret_key = 'secret-key'
+
+# User session management setup
+login_manager = LoginManager()
+login_manager.init_app(app)
+login_manager.login_view = "login"
+
+# Mock database for users
+users = {}
+
+class User(UserMixin):
+ def __init__(self, id, username, password):
+ self.id = id
+ self.username = username
+ self.password_hash = generate_password_hash(password)
+
+@login_manager.user_loader
+def load_user(user_id):
+ return users.get(user_id)
+
+@app.route('/register', methods=['GET', 'POST'])
+def register():
+ if request.method == 'POST':
+ username = request.form['username']
+ password = request.form['password']
+ user_id = len(users) + 1
+ if username in [user.username for user in users.values()]:
+ flash("Username already exists. Please choose a different one.")
+ else:
+ users[user_id] = User(user_id, username, password)
+ flash("User registered successfully!")
+ return redirect(url_for('login'))
+ return render_template('register.html')
+
+@app.route('/login', methods=['GET', 'POST'])
+def login():
+ if request.method == 'POST':
+ username = request.form['username']
+ password = request.form['password']
+ user = next((u for u in users.values() if u.username == username), None)
+ if user and check_password_hash(user.password_hash, password):
+ login_user(user)
+ return redirect(url_for('dashboard'))
+ else:
+ flash("Invalid username or password.")
+ return render_template('login.html')
+
+@app.route('/dashboard')
+@login_required
+def dashboard():
+ return render_template('dashboard.html')
+
+@app.route('/logout')
+@login_required
+def logout():
+ logout_user()
+ return redirect(url_for('login'))
+
+if __name__ == '__main__':
+ app.run(debug=True)
diff --git a/app/feedback.py b/app/feedback.py
new file mode 100644
index 0000000..539484e
--- /dev/null
+++ b/app/feedback.py
@@ -0,0 +1,30 @@
+# Flask route for handling feedback submission
+
+from flask import Flask, request, jsonify, render_template
+import csv
+
+app = Flask(__name__)
+
+# Route to render feedback form
+@app.route('/feedback', methods=['GET'])
+def feedback():
+ # You can dynamically pass the response to be rated in 'response' variable
+ response = "Example response from LLM to be rated"
+ return render_template('feedback.html', response=response)
+
+# Route to handle feedback submission
+@app.route('/submit-feedback', methods=['POST'])
+def submit_feedback():
+ rating = request.form['rating']
+ comments = request.form['comments']
+ model_response = request.form['model-response']
+
+ # Save feedback to a CSV file
+ with open('feedback.csv', mode='a') as feedback_file:
+ feedback_writer = csv.writer(feedback_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
+ feedback_writer.writerow([model_response, rating, comments])
+
+ return jsonify(status='success', message='Thank you for your feedback!')
+
+if __name__ == "__main__":
+ app.run(debug=True)
diff --git a/app/static/app.js b/app/static/app.js
index 6faa550..0081b0b 100644
--- a/app/static/app.js
+++ b/app/static/app.js
@@ -1 +1,46 @@
-console.log('App JS');
\ No newline at end of file
+// UI Enhancements - Adding Animations, Dark Mode Toggle, and Tooltips
+
+document.addEventListener('DOMContentLoaded', function() {
+ // Dark Mode Toggle
+ const darkModeToggle = document.getElementById('dark-mode-toggle');
+ const body = document.body;
+
+ darkModeToggle.addEventListener('click', () => {
+ body.classList.toggle('dark-mode');
+ if (body.classList.contains('dark-mode')) {
+ localStorage.setItem('theme', 'dark');
+ } else {
+ localStorage.setItem('theme', 'light');
+ }
+ });
+
+ // Persist Dark Mode Setting
+ if (localStorage.getItem('theme') === 'dark') {
+ body.classList.add('dark-mode');
+ }
+
+ // Tooltip Initialization
+ const tooltips = document.querySelectorAll('.tooltip');
+ tooltips.forEach(tooltip => {
+ tooltip.addEventListener('mouseover', function() {
+ const tooltipText = document.createElement('span');
+ tooltipText.className = 'tooltip-text';
+ tooltipText.innerText = this.getAttribute('data-tooltip');
+ this.appendChild(tooltipText);
+ });
+ tooltip.addEventListener('mouseout', function() {
+ const tooltipText = this.querySelector('.tooltip-text');
+ if (tooltipText) this.removeChild(tooltipText);
+ });
+ });
+
+ // GSAP Animations for Elements
+ gsap.from('.card', {
+ duration: 1,
+ y: 50,
+ opacity: 0,
+ stagger: 0.2,
+ ease: 'power2.out'
+ });
+ });
+
\ No newline at end of file
diff --git a/app/static/chart.js b/app/static/chart.js
new file mode 100644
index 0000000..d9b8d44
--- /dev/null
+++ b/app/static/chart.js
@@ -0,0 +1,60 @@
+// Interactive Chart.js Visualizations
+
+document.addEventListener('DOMContentLoaded', function() {
+ const ctx = document.getElementById('modelPerformanceChart').getContext('2d');
+ const modelPerformanceChart = new Chart(ctx, {
+ type: 'line',
+ data: {
+ labels: ['Epoch 1', 'Epoch 2', 'Epoch 3', 'Epoch 4', 'Epoch 5'],
+ datasets: [{
+ label: 'Training Loss',
+ data: [0.8, 0.6, 0.4, 0.3, 0.2],
+ borderColor: 'rgba(75, 192, 192, 1)',
+ backgroundColor: 'rgba(75, 192, 192, 0.2)',
+ fill: true,
+ tension: 0.4
+ }, {
+ label: 'Validation Loss',
+ data: [0.9, 0.7, 0.5, 0.4, 0.3],
+ borderColor: 'rgba(255, 99, 132, 1)',
+ backgroundColor: 'rgba(255, 99, 132, 0.2)',
+ fill: true,
+ tension: 0.4
+ }]
+ },
+ options: {
+ responsive: true,
+ plugins: {
+ legend: {
+ position: 'top',
+ },
+ tooltip: {
+ mode: 'index',
+ intersect: false,
+ }
+ },
+ interaction: {
+ mode: 'nearest',
+ axis: 'x',
+ intersect: false
+ },
+ scales: {
+ x: {
+ display: true,
+ title: {
+ display: true,
+ text: 'Epoch'
+ }
+ },
+ y: {
+ display: true,
+ title: {
+ display: true,
+ text: 'Loss'
+ }
+ }
+ }
+ }
+ });
+ });
+
\ No newline at end of file
diff --git a/app/static/styles.css b/app/static/styles.css
index a71aaab..9b55977 100644
--- a/app/static/styles.css
+++ b/app/static/styles.css
@@ -1 +1,52 @@
-body { font-family: Arial; }
\ No newline at end of file
+/* Dark Mode Styles */
+body.dark-mode {
+ background-color: #121212;
+ color: #ffffff;
+ }
+
+ button#dark-mode-toggle {
+ background-color: #333;
+ color: #fff;
+ border: none;
+ padding: 10px;
+ cursor: pointer;
+ border-radius: 5px;
+ }
+
+ button#dark-mode-toggle:hover {
+ background-color: #555;
+ }
+
+ /* Tooltip Styles */
+ .tooltip {
+ position: relative;
+ cursor: pointer;
+ }
+
+ .tooltip .tooltip-text {
+ position: absolute;
+ bottom: 125%;
+ left: 50%;
+ transform: translateX(-50%);
+ background-color: #333;
+ color: #fff;
+ padding: 5px;
+ border-radius: 4px;
+ white-space: nowrap;
+ opacity: 0;
+ transition: opacity 0.3s;
+ }
+
+ .tooltip:hover .tooltip-text {
+ opacity: 1;
+ }
+
+ /* GSAP Animation Styles */
+ .card {
+ background: #f8f8f8;
+ padding: 20px;
+ margin: 20px;
+ border-radius: 10px;
+ box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
+ }
+
\ No newline at end of file
diff --git a/app/static/swagger.json b/app/static/swagger.json
new file mode 100644
index 0000000..f01e635
--- /dev/null
+++ b/app/static/swagger.json
@@ -0,0 +1,47 @@
+{
+ "swagger": "2.0",
+ "info": {
+ "description": "This is the API documentation for the LLM Alignment Assistant.",
+ "version": "1.0.0",
+ "title": "LLM Alignment Assistant API"
+ },
+ "host": "localhost:5000",
+ "basePath": "/api",
+ "schemes": [
+ "http"
+ ],
+ "paths": {
+ "/health": {
+ "get": {
+ "tags": [
+ "Health"
+ ],
+ "summary": "Checks the health status of the API",
+ "operationId": "healthCheck",
+ "produces": [
+ "application/json"
+ ],
+ "responses": {
+ "200": {
+ "description": "API is healthy",
+ "schema": {
+ "$ref": "#/definitions/HealthStatus"
+ }
+ }
+ }
+ }
+ }
+ },
+ "definitions": {
+ "HealthStatus": {
+ "type": "object",
+ "properties": {
+ "status": {
+ "type": "string",
+ "example": "healthy"
+ }
+ }
+ }
+ }
+ }
+
\ No newline at end of file
diff --git a/app/static/swagger_docs_extended.json b/app/static/swagger_docs_extended.json
new file mode 100644
index 0000000..492094b
--- /dev/null
+++ b/app/static/swagger_docs_extended.json
@@ -0,0 +1,49 @@
+{
+ "swagger": "2.0",
+ "info": {
+ "description": "LLM Alignment Assistant API - Interactive Documentation",
+ "version": "1.0.0",
+ "title": "LLM Alignment Assistant API"
+ },
+ "host": "localhost:5000",
+ "basePath": "/api",
+ "schemes": ["http"],
+ "paths": {
+ "/train": {
+ "post": {
+ "tags": ["Model Training"],
+ "summary": "Initiate model training with provided data",
+ "parameters": [
+ {
+ "in": "body",
+ "name": "trainingData",
+ "description": "Training data for the model",
+ "required": true,
+ "schema": {
+ "$ref": "#/definitions/TrainingData"
+ }
+ }
+ ],
+ "responses": {
+ "200": {
+ "description": "Training started successfully"
+ }
+ }
+ }
+ }
+ },
+ "definitions": {
+ "TrainingData": {
+ "type": "object",
+ "properties": {
+ "data": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ }
+ }
+ }
+ }
+ }
+ }
+
\ No newline at end of file
diff --git a/app/templates/chat.html b/app/templates/chat.html
new file mode 100644
index 0000000..49b81ef
--- /dev/null
+++ b/app/templates/chat.html
@@ -0,0 +1,29 @@
+
+
+
+
+
+
+ Interactive Chat
+
+
+
+
💬 Interactive Chat
+
+
+
+
+
+
+
+
diff --git a/app/templates/feedback.html b/app/templates/feedback.html
new file mode 100644
index 0000000..55ed688
--- /dev/null
+++ b/app/templates/feedback.html
@@ -0,0 +1,26 @@
+
+
+
+
+
+
+
+
+ Feedback Form
+
+
+ 📝 User Feedback
+
+
+
diff --git a/app/ui.py b/app/ui.py
index 1b3f3fb..d4e7384 100644
--- a/app/ui.py
+++ b/app/ui.py
@@ -1 +1,26 @@
-# Frontend logic
\ No newline at end of file
+from flask import Flask, jsonify
+from flask_swagger_ui import get_swaggerui_blueprint
+
+app = Flask(__name__)
+
+# Swagger configuration
+SWAGGER_URL = '/api/docs' # URL for accessing Swagger UI
+API_URL = '/static/swagger.json' # Path to Swagger JSON
+
+swaggerui_blueprint = get_swaggerui_blueprint(
+ SWAGGER_URL,
+ API_URL,
+ config={
+ 'app_name': "LLM Alignment Assistant API Documentation"
+ }
+)
+
+# Register Swagger Blueprint
+app.register_blueprint(swaggerui_blueprint, url_prefix=SWAGGER_URL)
+
+@app.route('/api/health', methods=['GET'])
+def health_check():
+ return jsonify(status='healthy')
+
+if __name__ == '__main__':
+ app.run(debug=True)
diff --git a/config/pretrained_model_config.json b/config/pretrained_model_config.json
new file mode 100644
index 0000000..1961646
--- /dev/null
+++ b/config/pretrained_model_config.json
@@ -0,0 +1,9 @@
+{
+ "model_name": "bert-base-uncased",
+ "num_labels": 2,
+ "max_length": 128,
+ "learning_rate": 2e-5,
+ "batch_size": 16,
+ "epochs": 3
+ }
+
\ No newline at end of file
diff --git a/dashboards/explainability_dashboard.py b/dashboards/explainability_dashboard.py
new file mode 100644
index 0000000..f3eb3a9
--- /dev/null
+++ b/dashboards/explainability_dashboard.py
@@ -0,0 +1,33 @@
+# SHAP-based Explainability Dashboard using Streamlit
+
+import streamlit as st
+import shap
+import matplotlib.pyplot as plt
+import joblib
+import pandas as pd
+
+# Load the trained model
+model = joblib.load('model/retrained_model.pkl')
+
+# Sample data for explanation
+X_sample = pd.DataFrame({
+ 'Feature1': [1, 2, 3, 4, 5],
+ 'Feature2': [5, 4, 3, 2, 1],
+ 'Feature3': [2, 3, 4, 5, 6]
+})
+
+# Title of the dashboard
+st.title("🧐 Model Explainability Dashboard")
+
+# Explain predictions using SHAP
+explainer = shap.Explainer(model, X_sample)
+shap_values = explainer(X_sample)
+
+# Plot SHAP Summary Plot
+st.header("SHAP Summary Plot")
+fig_summary = shap.summary_plot(shap_values, X_sample, show=False)
+st.pyplot(fig_summary)
+
+# Feature Importance
+st.header("Feature Importance")
+shap.plots.bar(shap_values)
diff --git a/dashboards/performance_dashboard.py b/dashboards/performance_dashboard.py
new file mode 100644
index 0000000..389faf5
--- /dev/null
+++ b/dashboards/performance_dashboard.py
@@ -0,0 +1,63 @@
+# Expanded Performance Dashboard using Streamlit
+
+import streamlit as st
+import pandas as pd
+import numpy as np
+import matplotlib.pyplot as plt
+from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
+
+# Title of the dashboard
+st.title("📊 LLM Alignment Assistant Expanded Performance Dashboard")
+
+# Sidebar filters for the dashboard
+st.sidebar.header("Filters")
+epochs = st.sidebar.slider("Select Epoch Range", 1, 50, (1, 10))
+
+# Mock Data - Training & Validation Loss
+st.header("Training and Validation Loss")
+train_loss = np.linspace(0.8, 0.1, 50)
+val_loss = np.linspace(0.9, 0.15, 50)
+
+filtered_epochs = range(epochs[0], epochs[1] + 1)
+filtered_train_loss = train_loss[epochs[0] - 1:epochs[1]]
+filtered_val_loss = val_loss[epochs[0] - 1:epochs[1]]
+
+fig, ax = plt.subplots()
+ax.plot(filtered_epochs, filtered_train_loss, label='Training Loss', color='blue')
+ax.plot(filtered_epochs, filtered_val_loss, label='Validation Loss', color='red')
+ax.set_xlabel('Epoch')
+ax.set_ylabel('Loss')
+ax.set_title('Training vs Validation Loss')
+ax.legend()
+
+# Display the plot
+st.pyplot(fig)
+
+# Performance Metrics
+st.header("Model Performance Metrics")
+col1, col2, col3 = st.columns(3)
+col1.metric("Training Loss", f"{train_loss[-1]:.4f}")
+col2.metric("Validation Loss", f"{val_loss[-1]:.4f}")
+col3.metric("Accuracy", "92.5%")
+
+# Confusion Matrix
+st.header("Confusion Matrix")
+y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]
+y_pred = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0]
+cm = confusion_matrix(y_true, y_pred)
+fig_cm, ax_cm = plt.subplots()
+ConfusionMatrixDisplay(cm).plot(ax=ax_cm)
+st.pyplot(fig_cm)
+
+# Bias Metrics Visualization
+st.header("Bias Metrics by Group")
+try:
+ bias_metrics_df = pd.read_csv('bias_metrics.csv')
+ st.dataframe(bias_metrics_df)
+except FileNotFoundError:
+ st.warning("Bias metrics data not found. Please generate bias metrics using `bias_analysis.py`.")
+
+# Instructions for running the dashboard
+st.markdown("---")
+st.markdown("**Instructions:** To run this dashboard, use the command:")
+st.code("streamlit run performance_dashboard.py", language='bash')
diff --git a/deployment/kubernetes/ingress.yaml b/deployment/kubernetes/ingress.yaml
index 5d0ea26..3ea0430 100644
--- a/deployment/kubernetes/ingress.yaml
+++ b/deployment/kubernetes/ingress.yaml
@@ -1 +1,18 @@
-apiVersion: networking.k8s.io/v1
\ No newline at end of file
+apiVersion: networking.k8s.io/v1
+kind: Ingress
+metadata:
+ name: llm-ingress
+ annotations:
+ nginx.ingress.kubernetes.io/rewrite-target: /
+spec:
+ rules:
+ - host: llm.example.com
+ http:
+ paths:
+ - path: /
+ pathType: Prefix
+ backend:
+ service:
+ name: llm-service
+ port:
+ number: 80
diff --git a/docker-compose.logging.yml b/docker-compose.logging.yml
new file mode 100644
index 0000000..978200f
--- /dev/null
+++ b/docker-compose.logging.yml
@@ -0,0 +1,27 @@
+version: '3.1'
+
+services:
+ elasticsearch:
+ image: docker.elastic.co/elasticsearch/elasticsearch:7.10.1
+ container_name: elasticsearch
+ environment:
+ - discovery.type=single-node
+ ports:
+ - "9200:9200"
+ - "9300:9300"
+
+ logstash:
+ image: docker.elastic.co/logstash/logstash:7.10.1
+ container_name: logstash
+ ports:
+ - "5044:5044"
+ volumes:
+ - ./logstash/config:/usr/share/logstash/config
+
+ kibana:
+ image: docker.elastic.co/kibana/kibana:7.10.1
+ container_name: kibana
+ ports:
+ - "5601:5601"
+ environment:
+ - ELASTICSEARCH_HOSTS=http://elasticsearch:9200
diff --git a/src/data/data_augmentation.py b/src/data/data_augmentation.py
new file mode 100644
index 0000000..7bdf3ed
--- /dev/null
+++ b/src/data/data_augmentation.py
@@ -0,0 +1,41 @@
+# Data Augmentation Script
+
+from googletrans import Translator
+from transformers import pipeline
+import pandas as pd
+import random
+
+# Load dataset
+data = pd.read_csv('data/raw/synthetic_data.csv')
+
+# Translator for back-translation
+translator = Translator()
+
+# Summarization for paraphrasing
+paraphraser = pipeline("summarization")
+
+def back_translation(text, target_language="fr"):
+ # Translate to target language and back to English
+ translated_text = translator.translate(text, dest=target_language).text
+ back_translated_text = translator.translate(translated_text, dest="en").text
+ return back_translated_text
+
+def paraphrase(text):
+ # Use summarization as a paraphrasing tool
+ paraphrased = paraphraser(text, max_length=100, min_length=30, do_sample=False)
+ return paraphrased[0]['summary_text']
+
+augmented_texts = []
+original_texts = data['text'].tolist()
+
+# Perform augmentation
+for text in original_texts:
+ if random.random() < 0.5:
+ augmented_texts.append(back_translation(text))
+ else:
+ augmented_texts.append(paraphrase(text))
+
+# Save augmented data
+augmented_data = pd.DataFrame({'text': augmented_texts, 'label': data['label']})
+augmented_data.to_csv('data/processed/augmented_training_data.csv', index=False)
+print("Augmented data saved.")
diff --git a/src/deployment/kubernetes/canary_deployment.yml b/src/deployment/kubernetes/canary_deployment.yml
new file mode 100644
index 0000000..14032da
--- /dev/null
+++ b/src/deployment/kubernetes/canary_deployment.yml
@@ -0,0 +1,24 @@
+apiVersion: apps/v1
+kind: Deployment
+metadata:
+ name: llm-alignment-assistant-canary
+ labels:
+ app: llm-alignment-assistant
+ version: canary
+spec:
+ replicas: 1
+ selector:
+ matchLabels:
+ app: llm-alignment-assistant
+ version: canary
+ template:
+ metadata:
+ labels:
+ app: llm-alignment-assistant
+ version: canary
+ spec:
+ containers:
+ - name: llm-alignment-assistant
+ image: user/repository:canary
+ ports:
+ - containerPort: 5000
diff --git a/src/deployment/kubernetes/hpa.yml b/src/deployment/kubernetes/hpa.yml
new file mode 100644
index 0000000..27b9973
--- /dev/null
+++ b/src/deployment/kubernetes/hpa.yml
@@ -0,0 +1,14 @@
+# Kubernetes Horizontal Pod Autoscaler Configuration
+
+apiVersion: autoscaling/v1
+kind: HorizontalPodAutoscaler
+metadata:
+ name: llm-alignment-assistant-hpa
+spec:
+ scaleTargetRef:
+ apiVersion: apps/v1
+ kind: Deployment
+ name: llm-alignment-assistant
+ minReplicas: 2
+ maxReplicas: 10
+ targetCPUUtilizationPercentage: 50
diff --git a/src/deployment/monitoring/grafana_dashboard.json b/src/deployment/monitoring/grafana_dashboard.json
new file mode 100644
index 0000000..18dc0b9
--- /dev/null
+++ b/src/deployment/monitoring/grafana_dashboard.json
@@ -0,0 +1,26 @@
+{
+ "title": "LLM Alignment Assistant Monitoring",
+ "panels": [
+ {
+ "type": "graph",
+ "title": "CPU Usage",
+ "targets": [
+ {
+ "expr": "node_cpu_seconds_total",
+ "legendFormat": "CPU Usage"
+ }
+ ]
+ },
+ {
+ "type": "graph",
+ "title": "Model Response Time",
+ "targets": [
+ {
+ "expr": "flask_http_request_duration_seconds",
+ "legendFormat": "Response Time"
+ }
+ ]
+ }
+ ]
+ }
+
\ No newline at end of file
diff --git a/src/deployment/monitoring/prometheus.yml b/src/deployment/monitoring/prometheus.yml
new file mode 100644
index 0000000..e55c843
--- /dev/null
+++ b/src/deployment/monitoring/prometheus.yml
@@ -0,0 +1,9 @@
+# Prometheus Configuration File
+
+global:
+ scrape_interval: 15s
+
+scrape_configs:
+ - job_name: 'flask_app_metrics'
+ static_configs:
+ - targets: ['localhost:5000']
diff --git a/src/evaluation/bias_analysis.py b/src/evaluation/bias_analysis.py
new file mode 100644
index 0000000..89d463a
--- /dev/null
+++ b/src/evaluation/bias_analysis.py
@@ -0,0 +1,25 @@
+# Bias Analysis using Fairlearn
+
+from fairlearn.metrics import MetricFrame
+from sklearn.metrics import accuracy_score
+import pandas as pd
+
+# Example data - Replace these with actual predictions and labels
+y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]
+y_pred = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0]
+sensitive_features = ['groupA', 'groupB', 'groupA', 'groupB', 'groupA', 'groupB', 'groupA', 'groupB', 'groupA', 'groupB']
+
+# Bias Evaluation with Fairlearn
+metric_frame = MetricFrame(
+ metrics=accuracy_score,
+ y_true=y_true,
+ y_pred=y_pred,
+ sensitive_features=sensitive_features
+)
+
+print("Overall Accuracy:", metric_frame.overall)
+print("Group Metrics:", metric_frame.by_group)
+
+# Output results to a CSV for visualization
+group_metrics_df = pd.DataFrame(metric_frame.by_group)
+group_metrics_df.to_csv('bias_metrics.csv', index=True)
diff --git a/src/experiments/mlflow_tracking.py b/src/experiments/mlflow_tracking.py
new file mode 100644
index 0000000..bcfa8ac
--- /dev/null
+++ b/src/experiments/mlflow_tracking.py
@@ -0,0 +1,33 @@
+# File: mlflow_tracking.py
+# Using MLflow to track model experiments
+
+import mlflow
+import mlflow.sklearn
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.datasets import load_iris
+from sklearn.model_selection import train_test_split
+
+# Load data
+data = load_iris()
+X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
+
+# MLflow Experiment Tracking
+with mlflow.start_run():
+ # Model Training
+ model = RandomForestClassifier(n_estimators=100, random_state=42)
+ model.fit(X_train, y_train)
+
+ # Log Parameters
+ mlflow.log_param("n_estimators", 100)
+ mlflow.log_param("random_state", 42)
+
+ # Log Metrics
+ train_accuracy = model.score(X_train, y_train)
+ test_accuracy = model.score(X_test, y_test)
+ mlflow.log_metric("train_accuracy", train_accuracy)
+ mlflow.log_metric("test_accuracy", test_accuracy)
+
+ # Log Model
+ mlflow.sklearn.log_model(model, "random_forest_model")
+
+ print(f"Model saved with train accuracy: {train_accuracy:.2f} and test accuracy: {test_accuracy:.2f}")
diff --git a/src/preprocessing/preprocess_data.py b/src/preprocessing/preprocess_data.py
new file mode 100644
index 0000000..b6dd4f6
--- /dev/null
+++ b/src/preprocessing/preprocess_data.py
@@ -0,0 +1,37 @@
+import pandas as pd
+import re
+from sklearn.model_selection import train_test_split
+
+# Load original and augmented data
+try:
+ original_data = pd.read_csv('data/raw/synthetic_data.csv')
+ augmented_data = pd.read_csv('data/processed/augmented_training_data.csv')
+except FileNotFoundError:
+ print("Error: One or more of the input files not found. Make sure the paths are correct.")
+ exit()
+
+# Combine datasets
+combined_data = pd.concat([original_data, augmented_data], ignore_index=True)
+
+# Basic text cleaning function
+def clean_text(text):
+ text = re.sub(r'http\S+', '', text) # Remove URLs
+ text = re.sub(r'[^A-Za-z0-9 ]+', '', text) # Remove non-alphanumeric characters
+ text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces
+ return text
+
+# Apply text cleaning
+combined_data['text'] = combined_data['text'].apply(clean_text)
+
+# Check for missing values and handle them
+if combined_data.isnull().values.any():
+ print("Warning: Missing values detected. Filling with empty strings.")
+ combined_data.fillna('', inplace=True)
+
+# Splitting the combined dataset into training and validation sets
+train_data, val_data = train_test_split(combined_data, test_size=0.2, random_state=42)
+
+# Save processed datasets
+train_data.to_csv('data/processed/train_data.csv', index=False)
+val_data.to_csv('data/processed/val_data.csv', index=False)
+print("Combined and processed datasets saved for training and validation.")
\ No newline at end of file
diff --git a/src/training/fine_tuning.py b/src/training/fine_tuning.py
index 5ced3d8..53ddc63 100644
--- a/src/training/fine_tuning.py
+++ b/src/training/fine_tuning.py
@@ -1,43 +1,122 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
-from datasets import load_dataset
-
-def fine_tune_model(model_name, dataset_path, output_dir):
- """
- Fine-tune a pre-trained language model on a given dataset.
- """
- # Load model and tokenizer
- model = AutoModelForCausalLM.from_pretrained(model_name)
- tokenizer = AutoTokenizer.from_pretrained(model_name)
-
- # Load dataset
- dataset = load_dataset("csv", data_files=dataset_path)
-
- # Tokenize the dataset
- def tokenize(batch):
- return tokenizer(batch["text"], truncation=True, padding="max_length")
-
- tokenized_dataset = dataset.map(tokenize, batched=True)
-
- # Define training arguments
- training_args = TrainingArguments(
- output_dir=output_dir,
- evaluation_strategy="steps",
- per_device_train_batch_size=8,
- save_steps=500,
- num_train_epochs=3
- )
-
- # Define Trainer
- trainer = Trainer(
- model=model,
- args=training_args,
- train_dataset=tokenized_dataset["train"],
- eval_dataset=tokenized_dataset["validation"],
- )
-
- # Train the model
- trainer.train()
-
- # Save the model
- model.save_pretrained(output_dir)
- tokenizer.save_pretrained(output_dir)
+# File: src/training/fine_tuning.py
+# Fine-tuning Script with Option to Use Pre-trained Models
+
+import torch
+from torch.optim import AdamW
+from transformers import BertForSequenceClassification, BertTokenizer
+from torch.utils.data import DataLoader, Dataset
+import pandas as pd
+from sklearn.model_selection import train_test_split
+
+# Load configuration
+use_pretrained = True
+model_name = 'bert-base-uncased'
+
+# Load Dataset
+train_data = pd.read_csv('data/processed/train_data.csv')
+val_data = pd.read_csv('data/processed/val_data.csv')
+
+# Tokenizer Setup
+tokenizer = BertTokenizer.from_pretrained(model_name)
+
+# Custom Dataset Class
+class CustomDataset(Dataset):
+ def __init__(self, texts, labels, tokenizer, max_length):
+ self.texts = texts
+ self.labels = labels
+ self.tokenizer = tokenizer
+ self.max_length = max_length
+
+ def __len__(self):
+ return len(self.texts)
+
+ def __getitem__(self, idx):
+ text = self.texts[idx]
+ label = self.labels[idx]
+ inputs = self.tokenizer.encode_plus(
+ text,
+ None,
+ add_special_tokens=True,
+ max_length=self.max_length,
+ padding='max_length',
+ return_token_type_ids=True,
+ truncation=True,
+ return_attention_mask=True,
+ return_tensors='pt'
+ )
+ return {
+ 'input_ids': inputs['input_ids'].flatten(),
+ 'attention_mask': inputs['attention_mask'].flatten(),
+ 'labels': torch.tensor(label, dtype=torch.long)
+ }
+
+# Prepare DataLoader for Training
+train_dataset = CustomDataset(
+ train_data['text'].values,
+ train_data['label'].values,
+ tokenizer,
+ max_length=128
+)
+val_dataset = CustomDataset(
+ val_data['text'].values,
+ val_data['label'].values,
+ tokenizer,
+ max_length=128
+)
+
+train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
+val_loader = DataLoader(val_dataset, batch_size=16)
+
+# Load Model
+if use_pretrained:
+ model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
+else:
+ model = BertForSequenceClassification(config=config)
+
+# Optimizer Setup
+optimizer = AdamW(model.parameters(), lr=2e-5)
+
+# Training Loop
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+model.to(device)
+
+for epoch in range(3):
+ model.train()
+ for batch in train_loader:
+ input_ids = batch['input_ids'].to(device)
+ attention_mask = batch['attention_mask'].to(device)
+ labels = batch['labels'].to(device)
+
+ outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
+ loss = outputs.loss
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ # Validation Loop
+ model.eval()
+ val_loss_total = 0
+ correct_predictions = 0
+ total = 0
+ with torch.no_grad():
+ for batch in val_loader:
+ input_ids = batch['input_ids'].to(device)
+ attention_mask = batch['attention_mask'].to(device)
+ labels = batch['labels'].to(device)
+
+ outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
+ val_loss_total += outputs.loss.item()
+ logits = outputs.logits
+ predictions = torch.argmax(logits, dim=-1)
+ correct_predictions += (predictions == labels).sum().item()
+ total += labels.size(0)
+
+ val_loss_avg = val_loss_total / len(val_loader)
+ val_accuracy = correct_predictions / total
+ print(f"Epoch {epoch + 1} - Validation Loss: {val_loss_avg:.4f} - Accuracy: {val_accuracy:.4f}")
+
+# Save Fine-tuned Model
+model.save_pretrained('model/fine_tuned_bert')
+tokenizer.save_pretrained('model/fine_tuned_bert')
+print("Fine-tuned model saved successfully.")
diff --git a/src/training/retrain_model.py b/src/training/retrain_model.py
new file mode 100644
index 0000000..58cd0e5
--- /dev/null
+++ b/src/training/retrain_model.py
@@ -0,0 +1,39 @@
+# File: retrain_model.py
+# Automated model retraining based on user feedback
+
+import pandas as pd
+import numpy as np
+import joblib
+from sklearn.model_selection import train_test_split
+from sklearn.ensemble import RandomForestClassifier
+
+# Load feedback data
+try:
+ feedback_data = pd.read_csv('feedback.csv')
+except FileNotFoundError:
+ print("No feedback data available for retraining.")
+ exit()
+
+# Prepare training data
+X = feedback_data['model-response']
+y = feedback_data['rating']
+
+# Feature extraction - Example using simple vectorization
+from sklearn.feature_extraction.text import CountVectorizer
+vectorizer = CountVectorizer()
+X_vect = vectorizer.fit_transform(X)
+
+# Split data into train and validation sets
+X_train, X_val, y_train, y_val = train_test_split(X_vect, y, test_size=0.2, random_state=42)
+
+# Retrain the model
+model = RandomForestClassifier(n_estimators=100, random_state=42)
+model.fit(X_train, y_train)
+
+# Evaluate model
+val_accuracy = model.score(X_val, y_val)
+print(f"Validation Accuracy after Retraining: {val_accuracy:.2f}")
+
+# Save the retrained model
+joblib.dump(model, 'model/retrained_model.pkl')
+print("Model retrained and saved successfully.")
diff --git a/src/training/transfer_learning.py b/src/training/transfer_learning.py
new file mode 100644
index 0000000..7149d9c
--- /dev/null
+++ b/src/training/transfer_learning.py
@@ -0,0 +1,86 @@
+# Transfer Learning Script
+import torch
+from transformers import BertForSequenceClassification, BertTokenizer
+from torch.optim import AdamW
+from sklearn.model_selection import train_test_split
+from torch.utils.data import DataLoader, Dataset
+import pandas as pd
+
+# Load pre-trained model and tokenizer from HuggingFace
+model_name = "bert-base-uncased"
+model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
+tokenizer = BertTokenizer.from_pretrained(model_name)
+
+# Custom Dataset class
+class CustomDataset(Dataset):
+ def __init__(self, texts, labels, tokenizer, max_length):
+ self.texts = texts
+ self.labels = labels
+ self.tokenizer = tokenizer
+ self.max_length = max_length
+
+ def __len__(self):
+ return len(self.texts)
+
+ def __getitem__(self, idx):
+ text = self.texts[idx]
+ label = self.labels[idx]
+ inputs = self.tokenizer.encode_plus(
+ text,
+ None,
+ add_special_tokens=True,
+ max_length=self.max_length,
+ padding='max_length',
+ return_token_type_ids=True,
+ truncation=True,
+ return_attention_mask=True,
+ return_tensors='pt'
+ )
+ return {
+ 'input_ids': inputs['input_ids'].flatten(),
+ 'attention_mask': inputs['attention_mask'].flatten(),
+ 'labels': torch.tensor(label, dtype=torch.long)
+ }
+
+# Load dataset
+data = pd.read_csv('data/processed/custom_training_data.csv')
+X = data['text'].values
+y = data['label'].values
+
+# Split data
+X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
+
+# Create DataLoader
+train_dataset = CustomDataset(X_train, y_train, tokenizer, max_length=128)
+val_dataset = CustomDataset(X_val, y_val, tokenizer, max_length=128)
+
+train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
+val_loader = DataLoader(val_dataset, batch_size=16)
+
+# Define optimizer
+optimizer = AdamW(model.parameters(), lr=2e-5)
+
+# Training loop
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+model.to(device)
+
+for epoch in range(3):
+ model.train()
+ for batch in train_loader:
+ input_ids = batch['input_ids'].to(device)
+ attention_mask = batch['attention_mask'].to(device)
+ labels = batch['labels'].to(device)
+
+ outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
+ loss = outputs.loss
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ print(f"Epoch {epoch + 1} completed.")
+
+# Save fine-tuned model
+model.save_pretrained('model/fine_tuned_bert')
+tokenizer.save_pretrained('model/fine_tuned_bert')
+print("Fine-tuned model saved.")
diff --git a/tests/e2e/ui_tests.spec.js b/tests/e2e/ui_tests.spec.js
new file mode 100644
index 0000000..796179c
--- /dev/null
+++ b/tests/e2e/ui_tests.spec.js
@@ -0,0 +1,20 @@
+// Cypress End-to-End Tests for UI
+
+describe('LLM Alignment Assistant UI Tests', () => {
+ it('Loads the Home Page and Checks Dark Mode Toggle', () => {
+ cy.visit('http://localhost:5000');
+ cy.get('#dark-mode-toggle').click();
+ cy.get('body').should('have.class', 'dark-mode');
+ cy.get('#dark-mode-toggle').click();
+ cy.get('body').should('not.have.class', 'dark-mode');
+ });
+
+ it('Submits User Feedback', () => {
+ cy.visit('http://localhost:5000/feedback');
+ cy.get('#rating').type('5');
+ cy.get('#comments').type('The response was very helpful.');
+ cy.get('form').submit();
+ cy.contains('Thank you for your feedback!');
+ });
+ });
+
\ No newline at end of file
diff --git a/tests/load_testing/locustfile.py b/tests/load_testing/locustfile.py
new file mode 100644
index 0000000..70b7102
--- /dev/null
+++ b/tests/load_testing/locustfile.py
@@ -0,0 +1,16 @@
+from locust import HttpUser, task, between
+
+class LoadTesting(HttpUser):
+ wait_time = between(1, 5)
+
+ @task
+ def test_health_endpoint(self):
+ self.client.get("/api/health")
+
+ @task
+ def test_feedback_submission(self):
+ self.client.post("/submit-feedback", {
+ "model-response": "Example response to rate",
+ "rating": "5",
+ "comments": "Great response!"
+ })