-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
269 lines (227 loc) · 12.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import string, numpy as np, pandas as pd, streamlit as st
from multiprocessing import Pool
from gensim.models import Doc2Vec
from gensim.models.doc2vec import TaggedDocument
from nltk import word_tokenize
from sklearn.cluster import KMeans
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import classification_report, pairwise_distances
from sklearn.metrics.pairwise import pairwise_kernels
from cleaning import (apply_cleaning, build_idf_matrix, build_lexicon, freq,
fulldataset, idf, l2_normalizer, numDocsContaining)
st.write("""
# Simple Traceability SRS Document
Berikut ini algoritma yang digunakan untuk pengukuran keterlacakan pada dokumen
""")
#file upload
index0 = st.file_uploader("Choose a file")
if index0 is not None:
st.sidebar.header('Dataset Parameter')
x1 = pd.ExcelFile(index0)
index1 = st.sidebar.selectbox( 'What Dataset you choose?', x1.sheet_names)
# Load data example (dari functional maupun nonfunctional)
st.header('Dataset parameters')
statement = fulldataset(index0, index1)
# Get text to clean (dari row yang diinginkan)
text_to_clean = list(statement['Requirement Statement'])
# Clean text
print("Loading Original & Cleaned Text...")
cleaned_text = apply_cleaning(text_to_clean)
# Show first example
text_df = pd.DataFrame([text_to_clean, cleaned_text],index=['ORIGINAL','CLEANED'], columns= statement['ID']).T
st.write(text_df)
st.header('Traceability parameters')
id_requirement = fulldataset(index0, index1)['ID']
genre = st.sidebar.radio("What do you choose?",('Information_Retrieval', 'Ontology', 'IR+LSA', 'IR+LDA'))
if genre == 'Information_Retrieval':
st.subheader("bag of words")
count_vector = CountVectorizer(cleaned_text)
count_vector.fit(cleaned_text)
kolom_df = count_vector.get_feature_names()
doc_array = count_vector.transform(cleaned_text).toarray()
frequency_matrix = pd.DataFrame(doc_array, index= id_requirement, columns= kolom_df)
st.write(frequency_matrix)
# l2 normalizer
vocabulary = build_lexicon(cleaned_text)
mydoclist = cleaned_text
my_idf_vector = [idf(word, mydoclist) for word in vocabulary]
my_idf_matrix = build_idf_matrix(my_idf_vector)
doc_term_matrix_tfidf = []
#performing tf-idf matrix multiplication
for tf_vector in doc_array:
doc_term_matrix_tfidf.append(np.dot(tf_vector, my_idf_matrix))
#normalizing
doc_term_matrix_tfidf_l2 = []
for tf_vector in doc_term_matrix_tfidf:
doc_term_matrix_tfidf_l2.append(l2_normalizer(tf_vector))
hasil_tfidf = np.matrix(doc_term_matrix_tfidf_l2)
st.subheader("l2 tfidf normalizer")
frequency_TFIDF = pd.DataFrame(hasil_tfidf,index= id_requirement, columns= kolom_df)
st.write(frequency_TFIDF)
st.subheader("IR using cosine")
X = np.array(hasil_tfidf[0:])
Y = np.array(hasil_tfidf)
cosine_similaritas = pairwise_kernels(X, Y, metric='linear')
cosine_df = pd.DataFrame(cosine_similaritas, index= id_requirement, columns= id_requirement)
st.write(cosine_df)
# klaster
klaster_value = st.sidebar.slider("Berapa Cluster?", 0, 5, len(id_requirement))
kmeans = KMeans(n_clusters= klaster_value) # You want cluster the passenger records into 2: Survived or Not survived
kmeans_df = kmeans.fit(cosine_similaritas)
st.subheader("K-Means Cluster")
correct = 0
for i in range(len(cosine_similaritas)):
predict_me = np.array(cosine_similaritas[i].astype(float))
predict_me = predict_me.reshape(-1, len(predict_me))
prediction = kmeans.predict(predict_me)
if prediction[0] == cosine_similaritas[i].all():
correct += 1
st.sidebar.write(correct/len(cosine_similaritas))
klasterkm = kmeans.cluster_centers_
klaster_df = pd.DataFrame(klasterkm, columns= id_requirement)
st.write(klaster_df)
elif genre == 'Ontology':
# document bag of words
count_vector = CountVectorizer(cleaned_text)
count_vector.fit(cleaned_text)
doc_array = count_vector.transform(cleaned_text).toarray()
doc_feature = count_vector.get_feature_names()
st.subheader('BOW parameters')
id_requirement = fulldataset(index0, index1)['ID']
bow_matrix = pd.DataFrame(doc_array, index= id_requirement, columns= doc_feature)
st.dataframe(bow_matrix)
# tfidf
doc_term_matrix_l2 = []
# document l2 normalizaer
for vec in doc_array:
doc_term_matrix_l2.append(l2_normalizer(vec))
# vocabulary & idf matrix
vocabulary = build_lexicon(cleaned_text)
mydoclist = cleaned_text
my_idf_vector = [idf(word, mydoclist) for word in vocabulary]
my_idf_matrix = build_idf_matrix(my_idf_vector)
doc_term_matrix_tfidf = []
#performing tf-idf matrix multiplication
for tf_vector in doc_array:
doc_term_matrix_tfidf.append(np.dot(tf_vector, my_idf_matrix))
doc_term_matrix_tfidf_l2 = []
#normalizing
for tf_vector in doc_term_matrix_tfidf:
doc_term_matrix_tfidf_l2.append(l2_normalizer(tf_vector))
hasil_tfidf = np.matrix(doc_term_matrix_tfidf_l2)
st.subheader('TFIDF parameters')
tfidf_matrix = pd.DataFrame(hasil_tfidf, index= id_requirement, columns= doc_feature)
st.dataframe(tfidf_matrix)
#doc2vec
st.subheader('doc2vec parameters')
sentences = [word_tokenize(num) for num in cleaned_text]
for i in range(len(sentences)):
sentences[i] = TaggedDocument(words = sentences[i], tags = ['sent{}'.format(i)]) # converting each sentence into a TaggedDocument
st.sidebar.subheader("Model Parameter")
size_value = st.sidebar.slider('Berapa Size Model?', 0, 200, len(doc_feature))
iterasi_value = st.sidebar.slider('Berapa Iterasi Model?', 0, 100, 10)
window_value = st.sidebar.slider('Berapa Window Model?', 0, 10, 3)
dimension_value = st.sidebar.slider('Berapa Dimension Model', 0, 10, 1)
model = Doc2Vec(documents = sentences, dm = dimension_value, size = size_value, window = window_value, min_count = 1, iter = iterasi_value, workers = Pool()._processes)
model.init_sims(replace = True)
# nilai_vektor = [model.infer_vector("sent{}".format(num)) for num in enumerate(cleaned_text)]
nilai_vektor = [model.infer_vector(num) for num, sent in sentences]
id_requirement = fulldataset(index0, index1)['ID']
df_vektor = pd.DataFrame(nilai_vektor, index=id_requirement, columns= ['vektor {}'.format(num) for num in range(0, size_value)])
st.dataframe(df_vektor)
# Kmeans
st.subheader('Kmeans parameters')
true_k = len(nilai_vektor)
model = KMeans(n_clusters=true_k, init='k-means++', max_iter=iterasi_value, n_init=1)
model.fit(nilai_vektor)
order_centroids = model.cluster_centers_.argsort()[:, ::-1]
id_requirement = fulldataset(index0, index1)['ID']
df_kmeans = pd.DataFrame(order_centroids, index= id_requirement, columns= ['vektor {}'.format(num) for num in range(0, size_value)])
st.dataframe(df_kmeans)
elif genre == 'IR+LSA':
st.sidebar.subheader("Parameter LSA")
feature_value = st.sidebar.slider("Berapa Feature?", 10, 100, 1000)
df_value = st.sidebar.slider("Berapa df?", 0.0, 0.9, 0.5)
feature_value = st.sidebar.slider('Berapa Max Feature Model?', 0, 10, 1000)
iterasi_value = st.sidebar.slider('Berapa Dimension Model?', 0, 200, 100)
random_value = st.sidebar.slider('Berapa Random Model?', 0, 300, 122)
vectorizer = TfidfVectorizer(stop_words='english',
max_features= feature_value, # keep top 1000 terms
max_df = df_value,
smooth_idf=True)
X = vectorizer.fit_transform(cleaned_text)
fitur_id = vectorizer.get_feature_names()
svd_model = TruncatedSVD(n_components= (X.shape[0]), algorithm='randomized', n_iter= iterasi_value, random_state= random_value)
svd_model.fit(X)
jumlah_kata = svd_model.components_
tabel_lsa = pd.DataFrame(jumlah_kata, index= id_requirement, columns= fitur_id)
st.dataframe(tabel_lsa)
st.subheader("LSA using cosine")
X = np.array(jumlah_kata[0:])
Y = np.array(jumlah_kata)
cosine_similaritas = pairwise_kernels(X, Y, metric='linear')
cosine_df = pd.DataFrame(cosine_similaritas,index= id_requirement, columns= id_requirement)
st.write(cosine_df)
# klaster
klaster_value = st.sidebar.slider("Berapa Cluster?", 0, 5, len(id_requirement))
kmeans = KMeans(n_clusters= klaster_value) # You want cluster the passenger records into 2: Survived or Not survived
kmeans_df = kmeans.fit(cosine_similaritas)
st.subheader("K-Means Cluster")
correct = 0
for i in range(len(cosine_similaritas)):
predict_me = np.array(cosine_similaritas[i].astype(float))
predict_me = predict_me.reshape(-1, len(predict_me))
prediction = kmeans.predict(predict_me)
if prediction[0] == cosine_similaritas[i].all():
correct += 1
st.sidebar.write(correct/len(cosine_similaritas))
klasterkm = kmeans.cluster_centers_
klaster_df = pd.DataFrame(klasterkm, columns= id_requirement)
st.write(klaster_df)
elif genre == 'IR+LDA':
st.sidebar.subheader("Parameter LDA")
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.feature_extraction.text import (CountVectorizer,
TfidfVectorizer)
feature_value = st.sidebar.slider("Berapa Feature?", 10, 100, 1000)
maxdf_value = st.sidebar.slider("Berapa df?", 0.0, 1.05, 0.95)
mindf_value = st.sidebar.slider("Berapa df?", 0, 5, 2)
feature_value = st.sidebar.slider('Berapa Max Feature Model?', 0, 10, 1000)
iterasi_value = st.sidebar.slider('Berapa Dimension Model?', 0, 200, 5)
random_value = st.sidebar.slider('Berapa Random Model?', 0, 10, 1)
tf_vectorizer = CountVectorizer(max_df=maxdf_value, min_df=mindf_value,
max_features= feature_value,
stop_words='english')
tf = tf_vectorizer.fit_transform(cleaned_text)
lda = LatentDirichletAllocation(n_components= tf.shape[0], max_iter= iterasi_value,
learning_method='online',
learning_offset= 50.,
random_state= random_value)
lda.fit(tf)
tf_feature_names = tf_vectorizer.get_feature_names()
jumlah_kata = lda.components_
tabel_lsa = pd.DataFrame(jumlah_kata, index= id_requirement, columns= tf_feature_names)
st.dataframe(tabel_lsa)
st.subheader("LDA using cosine")
X = np.array(jumlah_kata[0:])
Y = np.array(jumlah_kata)
cosine_similaritas = pairwise_kernels(X, Y, metric='linear')
cosine_df = pd.DataFrame(cosine_similaritas,index= id_requirement, columns= id_requirement)
st.write(cosine_df)
# klaster
klaster_value = st.sidebar.slider("Berapa Cluster?", 0, 5, len(id_requirement))
kmeans = KMeans(n_clusters= klaster_value) # You want cluster the passenger records into 2: Survived or Not survived
kmeans_df = kmeans.fit(cosine_similaritas)
st.subheader("K-Means Cluster")
correct = 0
for i in range(len(cosine_similaritas)):
predict_me = np.array(cosine_similaritas[i].astype(float))
predict_me = predict_me.reshape(-1, len(predict_me))
prediction = kmeans.predict(predict_me)
if prediction[0] == cosine_similaritas[i].all():
correct += 1
st.sidebar.write(correct/len(cosine_similaritas))
klasterkm = kmeans.cluster_centers_
klaster_df = pd.DataFrame(klasterkm, columns= id_requirement)
st.write(klaster_df)