-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathICCTallsExportTools.py
161 lines (144 loc) · 5.22 KB
/
ICCTallsExportTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -----------------------------------------------------------------------------
# Name: ICCTallsExport
# Purpose: Generar arxius SHP amb tots els fulls que composen els talls ICC
# descrits a l'article:
#
# Macau, M., Colomina, I. 1987.
# La generacio de talls geodesics en la cartografia de Catalunya
# per a escales 1:50000 i mes grans
# RCG n.5, juliol 1987, volum II. pp.16-31
#
# Author: atermens
# Created: 31/05/2019
# Copyright: (c) a.termens 2019
# License: CC BY 4.0
# -----------------------------------------------------------------------------
# !/usr/bin/env python
import math
import numpy as np
def sgn(graus, minuts, segons):
if graus < 0 or minuts < 0 or segons < 0.0:
return -1.0
else:
return 1.0
def de2ss(graus, minuts, segons):
wrk1 = sgn(graus, minuts, segons)
wrk2 = math.fabs(graus)*3600.0+math.fabs(minuts)*60.0+math.fabs(segons)
return wrk1*wrk2
def de2dd(graus, minuts, segons):
return de2ss(graus, minuts, segons)/3600.0
# -----------------------------------------------------------------------------
# esDins
# funcio que ens diu si un punt esta dins d'un poligon regular
# es considera que el poligon esta ordenat segons les agulles del rellotge
# len(xpol) = len(ypol) = npol
# -----------------------------------------------------------------------------
def esDins(punt, pol):
npol = len(pol)
recht = 0
for i in range(npol-1):
if dreta(pol[i], pol[i+1], punt) != 1:
recht += 1
if dreta(pol[npol-1], pol[0], punt) != -1:
recht += 1
if recht == npol:
return True
else:
return False
# -----------------------------------------------------------------------------
# dreta
# purpose: tests if point C is to the right of the edge from A to B
# usage: intval = dreta(A,B,C)
# +1 when C is to the right
# -1 when C is to the left
# 0 when A, B and C are colinear
# -----------------------------------------------------------------------------
def dreta(a, b, c):
tol = 1.e-15
prod = (c[0]-a[0])*(b[1]-a[1]) - (b[0]-a[0])*(c[1]-a[1])
if prod > tol:
return 1
elif prod < tol:
return -1
else:
return 0
# -----------------------------------------------------------------------------
# General Form of Equation of a Line defined by points p0 and p1
#
# A*x + B*y + C = 0
#
# where:
# p0=(x0,y0) and p1=(x1,y1)
#
# x-x0 y-y0 x-x0 y-y0
# ------- = ------- ------ = ------
# x1-x0 y1-y0 v0 v1
#
# v1*(x-x0) = v0*(y-y0)
# v1*x - v1*x0 = v0*y - v0*y0
# v1*x - v0*y + v0*y0-v1*x0 = 0
#
# A = v1
# B = -v0
# C = v0*y0-v1*x0
# -----------------------------------------------------------------------------
def recta(p0, p1):
v = [p1[0]-p0[0], p1[1]-p0[1]]
return [v[1], -v[0], v[0]*p0[1]-v[1]*p0[0]]
# -----------------------------------------------------------------------------
# Proposit
# -----------------------------------------------------------------------------
# Calcula el punt interseccio de R1 i R2,a on:
#
# R1 es la recta que passa pels punts p01 i p11
#
# x-p01[0] y-p01[1]
# --------------- = ---------------
# p11[0]-p01[0] p11[1]-p01[1]
#
# (p11[1]-p01[1])*x - (p11[0]-p01[0])*y =
# (p11[1]-p01[1])*p01[0] - (p11[0]-p01[0])*p01[1]
#
# De manera similar R2 es la recta que passa pels punts p02 i p12:
#
# (p12[1]-p02[1])*x - (p12[0]-p02[0])*y =
# (p12[1]-p02[1])*p02[0] - (p12[0]-p02[0])*p02[1]
#
# El punt de interseccio es la resultant de resoldre el sistema:
#
# (p11[1]-p01[1])*x - (p11[0]-p01[0])*y =
# (p11[1]-p01[1])*p01[0] - (p11[0]-p01[0])*p01[1]
# (p12[1]-p02[1])*x - (p12[0]-p02[0])*y =
# (p12[1]-p02[1])*p02[0] - (p12[0]-p02[0])*p02[1]
#
# S'utilizara la llibreria NumPy per a resoldre el sistema A*p = B,
# on p = inv(A)*B
# En el nostre cas,
# A => [[p11[1]-p01[1], -(p11[0]-p01[0])], [p12[1]-p02[1], -(p12[0]-p02[0])]]
# B => [[(p11[1]-p01[1])*p01[0]-(p11[0]-p01[0])*p01[1]],
# [p12[1]-p02[1])*p02[0]-(p12[0]-p02[0])*p02[1]]]
# Totes les dades son reals per vuit.El resultat es retornat en les
# variables X,Y (punt interseccio (X,Y) ).
# -----------------------------------------------------------------------------
def intersecta(p01, p11, p02, p12):
r1 = recta(p01, p11) # r1[0]*x + r1[1]*y = -r1[2]
r2 = recta(p02, p12)
a = np.array([[r1[0], r1[1]], [r2[0], r2[1]]])
b = np.array([[-r1[2]], [-r2[2]]])
p = np.linalg.inv(a).dot(b) # p es un np.array
punt = p.tolist() # [[x], [y]]
x = punt[0][0]
y = punt[1][0]
return [x, y]
# -----------------------------------------------------------------------------
# Discretitzacio del segment definit per p0 i p1 amb np elements
# -----------------------------------------------------------------------------
def segment(nP, p0, pN):
punt_list = []
for i in range(nP+1):
kk = float(i)/float(nP)
punt = []
for j in range(2):
punt.append(p0[j] + kk*(pN[j]-p0[j]))
punt_list.append(punt)
return punt_list