-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathword2vec.py
37 lines (33 loc) · 1.46 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import tqdm
import gensim
import argparse
import pandas as pd
from gensim.models import Word2Vec
from normalize_tweets import normalizeTweet
parser = argparse.ArgumentParser(description="Script to create Word2Vec embeddings from tweet texts")
parser.add_argument("-s", "--size", default=200, help="size/dimension of generated embeddings")
parser.add_argument("-w", "--windows", default=5, help="size of context window used for predicting words")
parser.add_argument("-W", "--workers", default=4, help="number of worker threads used")
parser.add_argument("-c", "--min_count", default=1, help="ignores words that have less number of occurences than this")
parser.add_argument("-d", "--dir", default=None)
args = parser.parse_args()
DIR = args.dir
if DIR:
files = [os.path.join(DIR, file) for file in os.listdir(DIR)]
elif args.file != None:
files = [args.file]
for file in files:
print("file being processed = {}".format(file))
f = open(file)
sentences = []
for i, line in enumerate(tqdm.tqdm(f)):
line = normalizeTweet(line)
# to make sure that non empty sentences are used (may result in erros otherwise)
if len(line.split()) > 0:
sentences.append(line.split())
f.close()
# train word2vec model
model = Word2Vec(sentences, size=args.size, window=args.windows, min_count=args.min_count, workers=args.workers)
# save the binary word2vec model
model.save(f'w2v_{file.split("/")[-1]}_{args.size}.bin')