-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepro.py
1305 lines (1032 loc) · 56.9 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python3
## Requires fastQC, trimmomatic and tally in $PATH variable
## author - atul Kakrana
## e-mail - [email protected]
## updated - 03/15/2017
## version - v2.2
## USAGE: python3 ScriptName.py
## IMPORTS #####################################
import sys,os,re,time,timeit,csv,glob,string
import shutil,datetime,operator,subprocess,multiprocessing,matplotlib
import itertools as it
from multiprocessing import Process, Queue, Pool
import mysql.connector as sql
import numpy as np
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
## ADVANCED SETTINGS #######################
numProc = 0 ## [developer] Coarse grain PP [0: Mazimize parallel processing | [1-64]: Number of Cores]
maxReadLen = 1000 ## [developer] Max allowed unchopped read length for graph generation
# nthread = 10 ## [developer] Fine grain PP - Optimization done automatically
## FUNCTIONS ##################################
def checkTools():
'''Checks for required componenets on user system'''
print("\n\n Checking for required libraries and components on this system\n\n")
isFastqc = shutil.which("fastqc")
if isFastqc:
print("Found :fastqc")
pass
else:
print("Please install 'fastqc' before using the tool")
print("See README for how to INSTALL")
sys.exit()
isTally = shutil.which("tally")
if isTally:
print("Found :Tally")
pass
else:
print("Please install 'Tally' before using the tool")
print("See README for how to INSTALL")
sys.exit()
def readSet():
print ("\n######## User Settings #############")
fh_in = open("prepro.set", 'r')
setFile = fh_in.readlines()
for line in setFile:
if line: ## Not empty
if line.startswith('@'):
line = line.strip().split('<')
param,value = line[0].split('=')
# print(param,value)
##Extract values
if param.strip() == '@libs':
global libs
libs = list(map(str,value.strip().split(',')))
print('User Input Libs :',libs)
elif param.strip() == '@genoFile':
global genoFile
genoFile = str(value.strip())
print('User Input genoFile :',genoFile)
elif param.strip() == '@Trimmomatic_PATH':
global Trimmomatic_PATH
Trimmomatic_PATH = str(value.strip())
print('User Input Trimmomatic_PATH :',Trimmomatic_PATH)
elif param.strip() == '@QCheckStep':
global QCheckStep
QCheckStep = int(value.strip())
print('User Input QCheckStep :',QCheckStep)
elif param.strip() == '@preProGraphsStep':
global preProGraphsStep
preProGraphsStep = int(value.strip())
print('User Input preProGraphsStep :',preProGraphsStep)
elif param.strip() == '@trimLibsStep':
global trimLibsStep
trimLibsStep = int(value.strip())
print('User Input trimLibsStep :',trimLibsStep)
elif param.strip() == '@chopLibsStep':
global chopLibsStep
chopLibsStep = int(value.strip())
print('User Input chopLibsStep :',chopLibsStep)
elif param.strip() == '@fastQ2CountStep':
global fastQ2CountStep
fastQ2CountStep = int(value.strip())
print('User Input fastQ2CountStep :',fastQ2CountStep)
elif param.strip() == '@mapperStep':
global mapperStep
mapperStep = int(value.strip())
print('User Input mapperStep :',mapperStep)
elif param.strip() == '@summaryFileStep':
global summaryFileStep
summaryFileStep = int(value.strip())
print('User Input summaryFileStep :',summaryFileStep)
elif param.strip() == '@cleanupStep':
global cleanupStep
cleanupStep = int(value.strip())
print('User Input cleanupStep :',cleanupStep)
elif param.strip() == '@seqType':
global seqType
seqType = int(value.strip())
print('User Input seqType :',seqType)
elif param.strip() == '@maxLen':
global maxLen
maxLen = int(value.strip())
print('User Input maxLen :',maxLen)
elif param.strip() == '@minLen':
global minLen
minLen = int(value.strip())
print('User Input minLen :',minLen)
elif param.strip() == '@unpairDel':
global unpairDel
unpairDel = int(value.strip())
print('User Input unpairDel :',unpairDel)
elif param.strip() == '@headCrop':
global headCrop
headCrop = int(value.strip())
#print('User Input preProGraphsStep:',cleanupStep)
elif param.strip() == '@tailCrop':
global tailCrop
tailCrop = int(value.strip())
#print('User Input preProGraphsStep:',cleanupStep)
elif param.strip() == '@adapterSelection':
global adapterSelection
adapterSelection = int(value.strip())
print('User Input adapterSelection :',adapterSelection)
elif param.strip() == '@adapterFile':
global adapterFile
TempaadapterFile = str(value.strip())
print('User Input adapterFile :',TempaadapterFile)
else:
#print("Missed line:",line)
pass
if Trimmomatic_PATH:
print("Found :Trimmomatic")
pass
else:
print("Please install 'Trimmomatic' before using the tool")
print("See README for how to INSTALL")
sys.exit()
if adapterSelection == 1:
adapterFile=TempaadapterFile
else:
if seqType == 0: #single end data
adapterFile= "TruSeq-SE.fa" #use single end Trimmomatic adapter File
else:
adapterFile= "TruSeq-PE.fa" #use paired end Trimmomatic adapter File
if len(genoFile) !=0 and preProGraphsStep==0:
print (genoFile)
print ("Error: You provided genome file. Set mapperStep and preProGraphsStep to 1. Please Read the mapperStep in settings file")
sys.exit()
elif len(genoFile)==0 and preProGraphsStep==1 :
print("Error: You have not provided genome file or path is incorrect")
print("Either set mapperStep and preProGraphsStep to 0 or provide a genome file")
sys.exit()
else:
pass
print('####################################')
return libs
def QCheck(aninput):
'''
Output: "libName_fastqc" folder
'''
print ('\n** Executing QCheck **')
print(aninput)
lib,nthread,infile = aninput
print('\n****Checking quality of %s library****' % (lib))
# toolPath = "%s/svn/Tools/FastQC/fastqc" % (os.getenv('HOME'))
toolPath = "fastqc"
retcode2 = subprocess.call([toolPath,infile,"--outdir=./"])
return None
def indexBuilder(genoFile):
'''
Output: "genoIndex"
'''
print ("\n**Deleting old index 'folder' !!!!!!!!!!!***\n")
print('If its a mistake cancel now by pressing ctrl+D and continue from index step by turning off earlier steps- You have 5 seconds')
time.sleep(5)
shutil.rmtree('./index', ignore_errors=True)
os.mkdir('./index')
genoIndex = './index/%s' % (genoFile.rpartition('/')[-1].rpartition('.')[0]) ## Can be merged with genoIndex from earlier part if we use bowtie2 earlier
print('**Creating index of cDNA/genomic sequences:%s**\n' % (genoIndex))
retcode = subprocess.call(["bowtie-build", genoFile, genoIndex])
return genoIndex
def trimLibs(aninput):
'''
Output: "libName.trimmed.fastq"
'''
print(aninput)
lib,ext,nthread,infile,adp_5p,adp_3p,minTagLen = aninput
print('\n****Trimming %s library with min length %s****' % (lib,minTagLen))
adapterFile = adp_3p ## For local analysis adp_3p is actually the adapterfile - see main
#toolPath = "%s/svn/Tools/Trimmomatic-0.32/trimmomatic-0.32.jar" % (os.getenv('HOME'))
toolPath = Trimmomatic_PATH
if headCrop > 0:
trimMinLen = minTagLen+headCrop+tailCrop
else:
trimMinLen = minTagLen
## Single End ###################
if seqType == 0:
trimmedFile = '%s.trimmed.%s' % (lib,ext) ## Output
retcode = subprocess.call(["java", "-jar", toolPath, "SE", "-phred33", "-threads", nthread, infile, trimmedFile, "ILLUMINACLIP:%s:2:30:10" % (adapterFile), "LEADING:3", "TRAILING:3", "SLIDINGWINDOW:4:10", "MINLEN:%s" % (trimMinLen)])
print (["java", "-jar", toolPath, "SE", "-phred33", "-threads", nthread, infile, trimmedFile, "ILLUMINACLIP:%s:2:30:10" % (adapterFile), "LEADING:3", "TRAILING:3", "SLIDINGWINDOW:4:10", "MINLEN:%s" % (minTagLen)])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\n****Trimming for %s complete****' % (infile) )
else:
print('Something wrong happened while chopping library: %s - - Debug for reason' % (lib))
sys.exit()
## Paired End ##################
elif seqType == 1:
trimmedFileP1 = '%s.pair_1.trimmed.%s' % (lib,ext) ## Output
trimmedFileP2 = '%s.pair_2.trimmed.%s' % (lib,ext) ## Output
trimmedFileU1 = '%s.unpair_1.trimmed.%s' % (lib,ext) ## Output
trimmedFileU2 = '%s.unpair_2.trimmed.%s' % (lib,ext) ## Output
infile1 = "%s_1.%s" % (lib,ext)
infile2 = "%s_2.%s" % (lib,ext)
retcode = subprocess.call(["java", "-jar", toolPath, "PE", "-phred33", "-threads", nthread, infile1, infile2, trimmedFileP1,trimmedFileU1,trimmedFileP2,trimmedFileU2, "ILLUMINACLIP:%s:2:30:10" % (adapterFile), "LEADING:3", "TRAILING:3", "SLIDINGWINDOW:4:15", "MINLEN:%s" % (trimMinLen)])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\n****Trimming for %s complete****' % (infile) )
else:
print('Something wrong happened while chopping library: %s - - Debug for reason' % (lib))
sys.exit()
## CLEANUP ##
if unpairDel == 1:
garbage = [afile for afile in os.listdir('./') if afile.endswith (('unpair_1.trimmed.fastq','unpair_2.trimmed.fastq'))] ## Excluded-'chopped.trimmed.fastq' as used by RNA Runner
for afile in garbage:
if os.path.isfile(afile): ## Check to see its a file from bowtie and not tophat mapped folder - Untested
print("Deleting %s" % (afile))
os.remove(afile)
else:
print("Skiiping cleanup, as its a directory %s" % (afile))
### Make plot
#charts(mappedList,mappedAbunList,allTagsList,allAbunList,mode)
return None
def fastQ2Count(aninput):
'''
de-duplicates the reads
'''
print(aninput)
lib,ext,nthread = aninput
print('\n****Converting %s.%s file to tag count****\n' % (lib,ext))
infile = '%s.%s' % (lib,ext)
outfile = '%s.%s.processed.txt' % (lib,ext.replace(".fastq",""))
print("This is outfile:%s" % (outfile))
# sys.exit()
retcode = subprocess.call(["tally", "-i", infile, "-o", outfile, "--nozip", "-format","%R%t%X%n"])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\n**** Conversion to tag count format for %s complete****' % (infile) )
else:
print("Something wrong happened while converting to %s library tag count - Debug for reason" % (lib))
sys.exit()
return None
def chopLibs(aninput):
''' Reverse read set of paired end lib is chopped from right end (5' in actuality) as done by using -
if we do chopping with trimming using PE mode it is still chopped the same way - Output: "libName.chopped.fastq" '''
print(aninput)
lib,ext,nthread,maxTagLen = aninput
print('****Chopping %s library to length %s****' % (lib,maxTagLen))
trimmedInFile = '%s.%s' % (lib,ext)
choppedOutFile = '%s.chopped.%s' % (lib,ext)
print("\n")
#toolPath = "%s/svn/Tools/Trimmomatic-0.32/trimmomatic-0.32.jar" % (os.getenv('HOME'))
toolPath = Trimmomatic_PATH
## Account for extra cropping
if headCrop > 0 or tailCrop > 0:
chopLen = maxTagLen+headCrop+tailCrop
else:
chopLen = maxTagLen
if seqType == 0:
retcode = subprocess.call(["java", "-jar", toolPath, "SE", "-phred33", "-threads", nthread, trimmedInFile, choppedOutFile, "CROP:%s" % (chopLen)])
else:
retcode = subprocess.call(["java", "-jar", toolPath, "SE", "-phred33", "-threads", nthread, trimmedInFile, choppedOutFile, "CROP:%s" % (chopLen)])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\n**** Chopping for %s complete****' % (trimmedInFile) )
else:
print('Something wrong happened while chopping library: %s - - Debug for reason' % (lib))
sys.exit()
return None
def cropEnds(aninput):
'''
Output: "libName.processed.txt"
'''
print(aninput)
lib,ext,nthread = aninput
if headCrop > 0 or tailCrop > 0:
print("** Performing additional head- and/or tail-cropping**")
inFile = '%s.chopped.trimmed.processed.txt' % (lib) ## Out put will replace this file and will have same name
fh_in = open(inFile,'r')
tagCountRead = fh_in.readlines()
fh_in.close()
## Re-write the lib.processed.txt, it's cached already i.e. empty the original and re-write with cropped entries
cropfile = '%s.chopped.trimmed.processed.temp.txt' % (lib)
fh_out = open(cropfile,'w')
for i in tagCountRead:
ent = i.strip("\n")
atag,acount = ent.split("\t")
croppedtag = atag[headCrop:-tailCrop] ### If user wants to chop 2-nt from both sides then [2:-2]
fh_out.write("%s\t%s\n" % (croppedtag,acount))
## Now Deduplicate again because earlier all the reads were made uniq by head and tail adpaters
retcode = subprocess.call(["tally", "-i", cropfile, "-o", inFile, "--nozip", "-record-format","%R%t%X%n","-format","%R%t%X%n"])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\n**** Conversion to head/tail cropped tag count format for %s complete ****' % (inFile) )
else:
print("Something wrong happened while converting to %s library tag count - Debug for reason" % (lib))
sys.exit()
fh_out.close()
return None
def tagCount2FASTA(inFile,Exprs):
'''
Convert tagcount to FASTA
'''
fh_in=open(inFile, 'r')
outFile = '%s.fa' % (inFile.rpartition('.')[0])
fh_out =open(outFile, 'w')
tag_num = 1 ### For naming tags
if Exprs=='Y': ### Write as raw sequencing file with tag repeate dnumber of times it appears in tag_count
##Write to file
print('\nWriting expression file for %s tagcount file' % (inp_file_name))
print('\n---PLEASE BE PATIENT---')
for ent in fh_in:##All the entries of the library
#if len(ent[0]) == 20:
ent = ent.split('\t')
tag_count = int(ent[1])
for count in range(tag_count):##Number of times the tag_count file
fh_out.write('>Tag%s\n%s\n' % (tag_num, ent[0]))
tag_num += 1
else: ##Convert tag count to FASTA
for i in fh_in:
ent = i.strip('\n').split('\t')
#print(ent)
fh_out.write('>Tag%s_%s\n%s\n' % (tag_num,ent[1],ent[0]))
tag_num += 1
fh_in.close()
fh_out.close()
return outFile
def indexIntegrityCheck(genoIndex):
'''
Checks the integrity of index and the extension
'''
indexFolder = genoIndex.rpartition("/")[0]
# print("This is the folder from earlier run:%s" % (indexFolder))
if os.path.isfile("%s.1.ebwtl" % (genoIndex)): ## Check if this extension exists in folder
indexExt = "ebwtl"
indexFiles = [i for i in os.listdir('%s' % (indexFolder)) if i.endswith('.ebwtl')]
if len(indexFiles) >= 6:
# print("Index has all six parts")
indexIntegrity = True
elif os.path.isfile("%s.1.ebwt" % (genoIndex)):
indexExt = "ebwt"
indexFiles = [i for i in os.listdir('%s' % (indexFolder)) if i.endswith('.ebwt')]
if len(indexFiles) >= 6:
# print("Index has all six parts")
indexIntegrity = True
else:
print("Existing index extension couldn't be determined")
print("Genome index will be remade")
indexExt = False
indexIntegrity = False
print("Ancillary data integrity :",indexIntegrity)
# print("Number of files:%s" % (len(indexFiles)))
return indexIntegrity,indexExt
def mapper(aninput):
'''
Map all libraries.Output: "libName.map"
'''
print('\nInput:',(aninput))
lib,ext,nthread,genoIndexPrePro,maxTagLen,mode = aninput
print ('Genomic index being used for mapping: %s\n'% (genoIndexPrePro))
#genoIndex = 'ASPARAGUS_UGA1_genome' ## Test
### Prepare ###########################################
inFile = '%s.%s' % (lib,ext)
print ('Processing %s for mapping to genome' % (inFile))
fastaFile = tagCount2FASTA(inFile,'N') ## Unique reads to FASTA format
mapFile = ('./%s.%s.map' % (lib,ext.rpartition('.')[0]))
print(genoIndexPrePro,inFile,fastaFile,mapFile)
## Map to index ##########################################
print ('Mapping %s processed file to genome' % (lib))
nthread2 = str(nthread)
if int(maxTagLen) > 60:
mismat = str(2)
elif int(maxTagLen) <= 60 and maxTagLen > 40:
mismat = str(1)
elif int(maxTagLen) <= 40:
mismat = str(0)
else:
pass
## Bowtie2 for future - Needs retest for speed before switching
#retcode = subprocess.call(["bowtie2", "-a", "--end-to-end", "-D 1", "-R 1", "-N 0", "-L 20", "-i L,0,1","--score-min L,0,0","--norc","--no-head", "--no-unal", "-t","-p",nthread,"-f", genoIndex,fastaFile,"-S",mapFile])
## Bowtie 1 - So as to be compatible with current indexes
retcode = subprocess.call(["bowtie","-f","-n",mismat,"-p", nthread2,"-t" ,genoIndexPrePro, fastaFile, mapFile])
if retcode == 0:## The bowtie mapping exit with status 0, all is well
print('\nBowtie mapping for %s complete' % (inFile) )
else:
print ("There is some problem with mapping of '%s' to cDNA/genomic index - Debug for reason" % (inFile))
print ("Script exiting.......")
sys.exit()
### Prepare lists for plotting
mappedList,mappedAbunList = mappedStats(aninput)
# print('Mapped Reads:',mappedList)
# print('Abundance of mapped:',mappedAbunList)
allTagsList,allAbunList = tagCountStats(aninput)
# print('\nAll Reads:',allTagsList)
# print('Abundance of all sizes:',allAbunList)
#### Test
###mappedList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95075, 166790, 278740, 869086, 735439, 1515217, 7389751, 694494, 122211, 60005, 46023, 39329, 33565, 26818, 19973, 15328, 11599, 842, 648, 579, 653, 1280, 1217, 1219, 1277, 955, 856, 749, 1268, 960, 766, 708, 1983, 28293, 0, 0, 0, 0, 0, 0, 0, 0]
###mappedAbunList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 594218, 805020, 1025890, 5581017, 4444132, 4992476, 20590608, 1714861, 805331, 732898, 595526, 476446, 392119, 299055, 216764, 151625, 91236, 1205, 851, 862, 1039, 3765, 3022, 2628, 3144, 1791, 1727, 1300, 2696, 1905, 2014, 1783, 9453, 856855, 0, 0, 0, 0, 0, 0, 0, 0]
###
###allTagsList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126163, 220695, 370421, 1103866, 954861, 1886032, 9010585, 1012559, 274245, 140174, 105363, 91338, 82506, 83528, 54283, 56415, 56744, 16843, 20320, 25321, 21814, 41079, 29515, 27635, 23628, 26212, 17507, 13588, 18378, 10826, 8296, 10611, 28215, 483608, 0, 0, 0, 0, 0, 0, 0, 0]
###allAbunList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 660160, 944285, 1217495, 6338895, 5015388, 5567509, 23419384, 2145615, 1029584, 858822, 709178, 672526, 658077, 416777, 348543, 248074, 173785, 21838, 23572, 28526, 26472, 77881, 53331, 41566, 36627, 33736, 22249, 17419, 24912, 13704, 10567, 14170, 42449, 1689522, 0, 0, 0, 0, 0, 0, 0, 0]
###
###mappedList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 166, 278, 869, 735, 1515, 7389, 694, 122, 600, 460, 39, 33, 26, 86]
###mappedAbunList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 594, 805, 1025, 5581, 4444, 4992, 20590, 1714, 805, 732, 595, 476, 392, 299, 180]
###
###allTagsList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 220, 370, 1103, 954, 1886, 9010, 1012, 274, 140, 105, 913, 825, 835, 644]
###allAbunList = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 660, 944, 1217, 6338, 5015, 5567, 23419, 2145, 1029, 858, 709, 672, 658, 416, 294]
## Plot
charts(lib,ext,mappedList,mappedAbunList,allTagsList,allAbunList,mode) ## Mode 1 - Preprocess graphs 2: processed files graphs
return None
def sampleInfoRead(sampleInfo):
''' This module reads a sample info file to make a list of
libraries/files, replicates and groups'''
print("\nFunction - sampleInfoRead")
fh_in = open(sampleInfo,'r')
fh_in.readline() ## Remove header
sampleRead = fh_in.readlines()
libs = [] ## List to hold libraries (server mode) or files (local mode)
reps = [] ## List to hold replicates
for i in sampleRead:
ent = i.strip("\n").split("\t")
anid = ent[1]
arep=ent[2]
agroup = ent[3]
libs.append(anid)
if groupBy == 'R':
reps.append(arep)
elif groupBy == 'G':
reps.append(agroup)
else:
print("Please choose correct sample grouping method")
print("System will exit now")
sys.exit()
print("This is 'libs':",libs)
print("These are 'reps':",reps)
print("Total files from sampleInfo:%s | Total number of replicates:%s" % (str(len(libs)),str(len(reps))))
print("Exiting function - sampleInfoRead\n")
return libs,reps
def coreReserve(cores):
'''
Decides the core pool for machine - written to make PHASworks comaptible with machines that
have less than 10 cores - Will be improved in future
'''
if cores == 0:
## Automatic assignment of cores selected
totalcores = int(multiprocessing.cpu_count())
if totalcores == 4: ## For quad core system
nproc = 3
elif totalcores == 6: ## For hexa core system
nproc = 5
elif totalcores > 6 and totalcores <= 10: ## For octa core system and those with less than 10 cores
nproc = 7
else:
nproc = int(totalcores*0.85)
else:
## Reserve user specifed cores
nproc = int(cores)
return nproc
def optimize(nproc):
'''
dirty optimization of threads per library
'''
nlibs = len(libs)
ninstances = int(nproc/nlibs) ### Number of parallel instances to use
# print("Libs:%s | nproc:%s | ninstance:%s" % (nlibs,nproc,ninstances))
if ninstances > 3:
nthread = ninstances
else:
nthread = 3
print("\n#### %s cores reserved for analysis ##########" % (str(nproc)))
print("#### %s cores assigned to one lib ############\n" % (str(nthread)))
# time.sleep(1)
return nthread
def PP(module,alist):
#print('***********Parallel instance of %s is being executed*********' % (module))
start = time.time()
npool = Pool(int(nproc))
npool.map(module, alist)
def PPBalance(module,alist):
'''
Balance process according to core pool
'''
#print('***********Parallel instance of %s is being executed*********' % (module))
start = time.time()
##PP is being used for Bowtie mappings - This will avoid overflooding of processes to server
nprocPP = round((nproc/int(nthread)))
if nprocPP < 1:
nprocPP = 1 ## 1 here so as to avoid 0 processor being allocated in serial mode
else:
pass
print("nprocPP : %s" % (nprocPP))
npool = Pool(int(nprocPP))
npool.map(module, alist)
def mappedStats(aninput):
'''
Parse map file and collect statics for graph generation
'''
print(aninput)
lib,ext,nthread,genoIndexPrePro,maxTagLen,mode = aninput
print('\nCollecting statistics of matched reads for Lib:%s' % (lib))
inFile = '%s.%s.map' % (lib,ext.rpartition('.')[0])
fh_in = open(inFile,'r')
mapFile = fh_in.read().split('\n')
if mode == 1:
mappedList = [0]*(maxReadLen) ## List lenght equal to max size of fragment (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
mappedAbunList = [0]*(maxReadLen) ## List length equal to max size of fragment +1 (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
elif mode == 2:
mappedList = [0]*(maxTagLen+1) ## List lenght equal to max size of fragment (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
mappedAbunList = [0]*(maxTagLen+1) ## List length equal to max size of fragment +1 (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
else:
print('\nThe mode selected for collecting mapped stats is not correct - Debug for reason')
for anent in mapFile[:-1]: ## Last entry is empty due to split on newline
ent = anent.split('\t')
#print(ent)
tagName,Abun = ent[0].split('_')
#print(tagName,Abun,len(ent[4]))
mappedList[len(ent[4])] += 1
mappedAbunList[len(ent[4])] += int(Abun)
return mappedList,mappedAbunList
def tagCountStats(aninput):
'''Get stats for all the reads from tagCount file'''
#print(aninput)
lib,ext,nthread,genoIndexPrePro,maxTagLen,mode = aninput
print('\nCollecting statistics of total reads for Lib:%s' % (lib))
inFile = '%s.%s' % (lib,ext)
print(inFile)
fh_in = open(inFile,'r')
tagCountFile = fh_in.read().split('\n')
if mode == 1:
allTagsList = [0]*(maxReadLen) ## List lenght equal to max size of fragment (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
allAbunList = [0]*(maxReadLen) ## List length equal to max size of fragment +1 (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
elif mode == 2:
allTagsList = [0]*(maxTagLen+1) ## List lenght equal to max size of fragment (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
allAbunList = [0]*(maxTagLen+1) ## List length equal to max size of fragment +1 (to compensate the python indexing) for ex. max chopped length = 34 than list should have 35 slots - Can be put in settings
else:
print('\nThe mode selected for collecting tag count stats is not correct - Debug for reason')
for anent in tagCountFile[:-1]: ## Last entry is empty due to split on newline
#print(anent)
tagSeq,Abun = anent.split('\t')
#print(tagSeq,Abun)
allTagsList[len(tagSeq)] += 1
allAbunList[len(tagSeq)] += int(Abun)
#print('Total Tags',allTagsList,'\n','Total Abundance',allAbunList)
return allTagsList,allAbunList
def charts(lib,ext,mappedList,mappedAbunList,allTagsList,allAbunList,mode):
'''
Graphs of pre-processed files i.e trimmed files
'''
if mode == 1:
print ("\n**Generating graphs for trimmed files**\n")
## Get all the tag sizes from disticnt tags list
#print('alltagsList:', allTagsList)
indexList = [i for i,x in enumerate(allTagsList) if x != 0]
#print ('indexList:',indexList)
minLen = min(indexList)
maxLen = max(indexList)
#### CHART-1: Distinct mapped vs distinct all
plotFile = ('%s.%s_distinct_before_chop.png' % (lib,ext.rsplit('.',2)[0]) )##Plot results file
#bottomList = [i for i in mappedList if i > 0]
#upList = [i for i in allTagsList if i > 0]
bottomList = list(mappedList[minLen:maxLen+1])
upList = list(allTagsList[minLen:maxLen+1]) ## Abundance of different sizes
upList2 = [a - b for a, b in zip(upList, bottomList)] ## Abundance substracted from bottom List - to plot the remainder on top
maxAbun = max(upList)
#print (len(bottomList),len(upList),maxAbun)
ybreak = 500000
## Different sizes to be plotted
N = int(maxLen) - int(minLen) +1
ind=np.arange(N)
#print('np.arange',ind)
width = 0.5
##plotting variables
p1 = plt.bar(ind, bottomList, width, color = 'g',)
p2 = plt.bar(ind, upList2, width, color = 'b', bottom=bottomList)
plt.ylabel('Count of distinct tags mapped to genome (before chopping)', fontproperties=font_manager.FontProperties(size=8))
plt.xlabel('Tag Length',fontproperties=font_manager.FontProperties(size=8))
plt.title('Distinct tags in %s library matched to genome before pre-processing' % (lib),fontproperties=font_manager.FontProperties(size=9))
plt.xticks(np.arange(N),
np.arange(int(minLen),int(maxLen)+1), rotation = 45, fontproperties=font_manager.FontProperties(size=6))
plt.yticks(np.arange(0,maxAbun+ybreak,ybreak),fontproperties=font_manager.FontProperties(size=6))
ax = plt.gca()
ax.yaxis.grid(True)
plt.legend((p1[0], p2[0]), ('Mapped reads','Total Reads'), loc=1, prop=font_manager.FontProperties(size=6))
plt.savefig(plotFile, format=None , facecolor='w', edgecolor='w', orientation='portrait', papertype=None, transparent=False, bbox_inches=None, pad_inches=0)
plt.clf() ## Clear figure so that next plot is different file
### CHART 2: Mapped abundance vs total abundance ######
plotFile2 = ('%s.%s_abund_before_chop.png' % (lib,ext.rsplit('.',2)[0]))##Plot results file
#bottomListAll = [i for i in mappedAbunList if i > 0]
#upListAll = [i for i in allAbunList if i > 0]
bottomListAll = list(mappedAbunList[minLen:maxLen+1])
upListAll = list(allAbunList[minLen:maxLen+1])
upListAll2 = [a - b for a, b in zip(upListAll, bottomListAll)] ## Abundance substracted from bottom List - to plot the remainder on top
maxAbun2 = max(upListAll)
#print (upListAll,maxAbun2)
ybreak2 = 500000
## Different sizes to be plotted
N = int(maxLen) - int(minLen) +1
#ind=np.arange(N)
width = 0.5
##plotting variables
p1 = plt.bar(ind, bottomListAll, width, color = 'm',)
p2 = plt.bar(ind, upListAll2, width, color = 'c',bottom=bottomListAll)
plt.ylabel('Total tags',fontproperties=font_manager.FontProperties(size=8))
plt.xlabel('Tag Length',fontproperties=font_manager.FontProperties(size=8))
plt.title('Total tags in %s library matched to genome (before chopping)' %(lib),fontproperties=font_manager.FontProperties(size=9))
plt.xticks(np.arange(N), np.arange(int(minLen),int(maxLen)+1),rotation = 45, fontproperties=font_manager.FontProperties(size=6) )
plt.yticks(np.arange(0,maxAbun2+ybreak2,ybreak2),fontproperties=font_manager.FontProperties(size=6))
ax = plt.gca()
ax.yaxis.grid(True)
plt.legend((p1[0], p2[0]), ('Mapped reads','Total Reads'), loc=1, prop=font_manager.FontProperties(size=6))
plt.savefig(plotFile2, format=None , facecolor='w', edgecolor='w', orientation='portrait', papertype=None, transparent=False, bbox_inches=None, pad_inches=0)
plt.clf() ## Clear figure so that next plot is different file
### Graphs of processed files
elif mode == 2: ## Graph of final processed reads:
print ("\n**Generating graphs for final processed files**\n")
indexList = [i for i,x in enumerate(allTagsList) if x != 0]
#print ('indexList:',indexList)
minLen = min(indexList)
maxLen = max(indexList)
#### CHART-1: Distinct mapped vs distinct all
plotFile = ('%s.%s_distinct_after_chop.png' % (lib,ext.rsplit('.',2)[0]))##Plot results file
bottomList = list(mappedList[minLen:maxLen+1])
upList = list(allTagsList[minLen:maxLen+1]) ## Abundance of different sizes
upList2 = [a - b for a, b in zip(upList, bottomList)] ## Abundance substracted from bottom List - to plot the remainder on top
maxAbun = max(upList)
#print (upList,maxAbun)
ybreak = 500000
## Different sizes to be plotted
N = int(maxLen) - int(minLen) +1
ind=np.arange(N)
#print('np.arange',ind)
width = 0.5
##plotting variables
p1 = plt.bar(ind, bottomList, width, color = 'g',)
p2 = plt.bar(ind, upList2, width, color = 'b', bottom=bottomList)
plt.ylabel('Count of distinct tags mapped to genome',fontproperties=font_manager.FontProperties(size=8))
plt.xlabel('Tag Length',fontproperties=font_manager.FontProperties(size=8))
plt.title('Distinct tags in %s library matched to genome after processing' %(lib),fontproperties=font_manager.FontProperties(size=9))
plt.xticks(np.arange(N),np.arange(int(minLen),int(maxLen)+1), rotation = 45, fontproperties=font_manager.FontProperties(size=6))
plt.yticks(np.arange(0,maxAbun+ybreak,ybreak),fontproperties=font_manager.FontProperties(size=6))
ax = plt.gca()
ax.yaxis.grid(True)
plt.legend((p1[0], p2[0]), ('Mapped reads','Total Reads'), loc=1, prop=font_manager.FontProperties(size=6))
plt.savefig(plotFile, format=None , facecolor='w', edgecolor='w', orientation='portrait', papertype=None, transparent=False, bbox_inches=None, pad_inches=0)
plt.clf() ## Clear figure so that next plot is different file
### Chart 2: All genomic reads
plotFile2 = ('%s.%s_abund_after_chop.png' % (lib,ext.rsplit('.',2)[0]))##Plot results file
bottomListAll = list(mappedAbunList[minLen:maxLen+1])
upListAll = list(allAbunList[minLen:maxLen+1])
upListAll2 = [a - b for a, b in zip(upListAll, bottomListAll)] ## Abundance substracted from bottom List - to plot the remainder on top
maxAbun2 = max(upListAll)
#print (upListAll,maxAbun2)
ybreak2 = 500000
## Different sizes to be plotted
N = int(maxLen) - int(minLen) +1
ind=np.arange(N)
width = 0.5
##plotting variables
p1 = plt.bar(ind, bottomListAll, width, color = 'm',)
p2 = plt.bar(ind, upListAll2, width, color = 'c',bottom=bottomListAll)
plt.ylabel('Total tags',fontproperties=font_manager.FontProperties(size=8))
plt.xlabel('Tag Length',fontproperties=font_manager.FontProperties(size=8))
plt.title('Total tags in %s library matched to genome after processing' %(lib),fontproperties=font_manager.FontProperties(size=9))
plt.xticks(np.arange(N), np.arange(int(minLen),int(maxLen)+1),rotation = 45, fontproperties=font_manager.FontProperties(size=6) )
plt.yticks(np.arange(0,maxAbun2+ybreak2,ybreak2),fontproperties=font_manager.FontProperties(size=6))
ax = plt.gca()
ax.yaxis.grid(True)
plt.legend((p1[0], p2[0]), ('Mapped reads','Total Reads'), loc=1, prop=font_manager.FontProperties(size=6))
plt.savefig(plotFile2, format=None , facecolor='w', edgecolor='w', orientation='portrait', papertype=None, transparent=False, bbox_inches=None, pad_inches=0)
plt.clf() ## Clear figure so that next plot is different file
else:
print('\nThe mode selected for generating graph is not correct- Debug for reason')
return None
def writeStats(aninput):
'''
Write a lib-specific summary file
'''
lib,minTagLen,maxTagLen = aninput
print (aninput)
### Read the library temp files with counts and abundances before and after processing
# print("Reading stats from: %s_allBefore.temp" % lib)
tempfile = "%s_allBefore.temp" % lib
if os.path.isfile(tempfile):
fh_before = open("%s_allBefore.temp" % lib,'r')
aread = fh_before.read().split('\n')
allTags,allAbun = aread
allTagsList,allAbunList = list(map(int,allTags.split(','))),list(map(int,allAbun.split(',')))
else:
print("@QCheckStep is turned-off so no stats will be generated for files before the pre-processing")
pass
# print("allTagsList:",allTagsList,"\nallAbunList:",allAbunList)
fh_after = open("%s_allAfter.temp" % (lib),'r')
aread2 = fh_after.read().split('\n')
allTags2,allAbun2 = aread2
allTagsList2,allAbunList2 = list(map(int,allTags2.split(','))),list(map(int,allAbun2.split(',')))
tempfile = "%s_mappedBefore.temp" % lib
if os.path.isfile(tempfile):
fh_map_before = open("%s_mappedBefore.temp" % (lib), 'r')
aread3 = fh_map_before.read().split('\n')
mapped,mappedAbun = aread3
mappedList,mappedAbunList = list(map(int,mapped.split(','))),list(map(int,mappedAbun.split(',')))
else:
print("@QCheckStep is turned-off so no stats will be generated for files before the pre-processing")
pass
fh_map_after = open("%s_mappedAfter.temp" % (lib),'r')
aread4 = fh_map_after.read().split('\n')
mapped2,mappedAbun2 = aread4
mappedList2,mappedAbunList2 = list(map(int,mapped2.split(','))),list(map(int,mappedAbun2.split(',')))
### Prepare to write #############################################
##################################################################
summFile = "%s_chopinfo.txt" % lib
fh_out = open(summFile,'w')
fh_out.write("Date - %s | Genome - %s\n" % (time.strftime("%d/%m/%Y"),genomeDB))
fh_out.write("Lib-%s\tBeforeProcessing-All\tAfterProcessing-All\tBeforeProcessing-Mapped\tAfterProcessing-Mapped\n" % (lib))
# print("allTagsList length:",len(allTagsList),"\nallAbunList length:",len(allAbunList))
indexList = [i for i,x in enumerate(allTagsList) if x != 0]
# print ('indexList:',indexList)
minLen = min(indexList)
maxLen = max(indexList)
indexList2 = [i for i,x in enumerate(allAbunList) if x != 0]
# print ('indexList2:',indexList)
minLenAbun = min(indexList2)
maxLenAbun = max(indexList2)
# print("Allowed min len:%s | Allowed max len:%s" % (minTagLen,maxTagLen))
# print("allTags min len:%s | allTags max len = %s | allAbun max len:%s | allAbun max len:%s\n" % (minLen,maxLen,minLenAbun,maxLenAbun))
countsAllBefore = list(allTagsList[minLen:maxLen+1])
countsAllAfter = list(allTagsList2[minLen:maxLen+1])
abunAllBefore = list(allAbunList[minLen:maxLen+1])
abunAllAfter = list(allAbunList2[minLen:maxLen+1])
# print(countsAllBefore,countsAllAfter,abunAllBefore,abunAllAfter)
countsMappedBefore = list(mappedList[minLen:maxLen+1])
countsMappedAfter = list(mappedList2[minLen:maxLen+1])
abunMappedBefore = list(mappedAbunList[minLen:maxLen+1])
abunMappedAfter = list(mappedAbunList2[minLen:maxLen+1])
# print(countsMappedBefore,countsMappedAfter,abunMappedBefore,abunMappedAfter)
## write summed tallies
fh_out.write("Total-Count\t%s\t%s\t%s\t%s\n" % (sum(countsAllBefore),sum(countsAllAfter),sum(countsMappedBefore),sum(countsMappedAfter)))
fh_out.write("Total-Abundance\t%s\t%s\t%s\t%s\n" % (sum(abunAllBefore),sum(abunAllAfter),sum(abunMappedBefore),sum(abunMappedAfter)))
## Write counts and abudnances for every tag length
indBefore = 0 ## Index to keep track of psoition in all tags (before processing list)
indAfter = 0 ## Index to keep track of position in processed lists
for i in indexList:
# print("Size of tag:%s" % (i))
## use size info from wishlist, to nter zero if size has been filtered out in processing
if i >= minTagLen and i <= maxTagLen:
fh_out.write("%snt-Count\t%s\t%s\t%s\t%s\n" % (i,countsAllBefore[indBefore],countsAllAfter[indAfter],countsMappedBefore[indBefore],countsMappedAfter[indAfter]))
fh_out.write("%snt-Abundance\t%s\t%s\t%s\t%s\n" % (i,abunAllBefore[indBefore],abunAllAfter[indAfter],abunMappedBefore[indBefore],abunMappedAfter[indAfter]))
indAfter += 1
indBefore+=1
else:
fh_out.write("%snt-Count\t%s\t0\t%s\t0\n" % (i,countsAllBefore[indBefore],countsMappedBefore[indBefore]))
fh_out.write("%snt-Abundance\t%s\t0\t%s\t0\n" % (i,abunAllBefore[indBefore],abunMappedBefore[indBefore]))
indBefore+=1
fh_out.close()
return None
def dedup_process(aninput):
'''
To parallelize the process
'''
print("\n#### Fn: De-duplicater #######################")
print(aninput)
lib,ext,nthread = aninput
print('\n****Converting %s.%s file to tag count****\n' % (lib,ext))
infile = '%s.%s' % (lib,ext)
outfile = '%s.%s.processed.txt' % (lib,ext.replace(".fastq",""))
print("This is outfile:%s" % (outfile))
afastaL = dedup_fastatolist(lib) ## Read
acounter = deduplicate(afastaL ) ## De-duplicate
countFile = dedup_writer(acounter,alib,outfile) ## Write
return countFile
def dedup_fastatolist(alib):
'''
New FASTA reader
'''
### Sanity check
try:
f = open(alib,'r')
except IOError:
print ("The file, %s, does not exist" % (alib))
return None
## Output
fastaL = [] ## List that holds FASTA tags
print("Reading FASTA file:%s" % (alib))
read_start = time.time()
acount = 0