-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlots_samples.R
247 lines (193 loc) · 10.2 KB
/
Plots_samples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
## Sample Graphics script
## Atul Kakrana
#### 24-nt PHAS loci v2 genome - Nov28 ####################################################################
########################################
getwd()
setwd("/new_data/data2/homes/kakrana/3.ProjectR/10.Asparagus")
exprs_data <- read.delim("24Phas.v2.txt",sep= "\t",header=TRUE,row.names=1,as.is=TRUE)
names(exprs_data);rownames(exprs_data);dim(exprs_data)
exprs_data[1:5,1:5]
data = as.matrix(exprs_data[13:18,1:65]); dim(data) ## Choose reproductive or all samples
test = data[,c(2,34,51,56)];test ## These will be removed
e = data[,-c(2,34,51,56)]; dim(e) ## Remove fasle positive
e=as.matrix(log2(data+1))
## Before clustering - Remove those with no variability i.e. all stages have 0 fold change
ind <- apply(e, 1, var) == 0
e <- e[!ind,];dim(e)
## Clustering - For 58 S/N panicle - CLUST1
hr <- hclust(as.dist(1-cor(t(e), method="pearson")), method="complete") ## Do you need to transpose??
hc <- hclust(as.dist(1-cor(e, method="spearman")), method="complete")
## Clustering - For 58 S/N Anther - CLUST2
# row_distance = dist(e, method = "euclidean") ## check available methods in 'dist' help file
# hr = hclust(row_distance, method = "complete") ## check available methods in 'hclust' help file
col_distance = dist(t(e), method = "manhattan")
hc = hclust(col_distance, method = "complete")
## Color
hmcol = colorRampPalette(c("white","white","pink","pink2","red","red3"))(1024)
# hmcol = colorRampPalette(brewer.pal(9,"Reds"))(512)
# hmcol = colorRampPalette(brewer.pal(6,"Blues"))(1024)
## Plot w/o clustering
# heatmap.2(e,col=hmcol,density.info="none",trace="none",scale='none',Colv=FALSE,Rowv=FALSE,
# cexRow=0.8,cexCol=0.8,dendrogram =c('none'),key=TRUE,keysize=1)##lhei=c(2.5,5.0),lwid=c(2.5,5.0)
## Plot with clustering
heatmap.2(e,col=hmcol,density.info="none",trace="none",scale='column',Colv=as.dendrogram(hc),Rowv=FALSE,
cexRow=0.6,cexCol=0.6,dendrogram =c('column'),key=TRUE,keysize=1)##lhei=c(2.5,5.0),lwid=c(2.5,5.0)
###########################################################################################################
################ Co-relation plot ####################################
######################################################################
require(psych)
getwd()
## Get data
setwd("/new_data/data2/homes/kakrana/3.ProjectR/8.Collab/5.UGA/co-relation/")
corr.data <- (read.table("lib-normalized-nt-normalized.abundances.veg.mod.w-inter.txt",sep= "\t",header=TRUE,row.names=1,as.is=TRUE))##
names(corr.data)
corr.data[1:5,1:5]
### Compute co-relations
res = corr.test(corr.data)
our.corr = round(res$r,6);our.corr
our.pvals = round(res$p,6);our.pvals
## Get colors
require(Heatplus);require(RColorBrewer);require(gplots)
hmcol = colorRampPalette(c("#40778a","grey88","white","white","grey88","#d33747"))(256)
## Make correlation plot
require(corrplot)
# corrplot(our.corr,p.mat = our.pvals,insig = "p-value", sig.level = -1,
# method = "circle",type = "lower",col = hmcol,tl.cex=0.6,cl.cex=0.6) ## p.mat = cor.matrix$p, insig = "p-value"
corrplot(our.corr,method = "circle",type = "lower",col = hmcol,tl.cex=0.6,cl.cex=0.6) ## p.mat = cor.matrix$p, insig = "p-value"
## Make heatmaps
heatmap.2(our.corr,col=hmcol,density.info="none",trace="none",scale="none",Colv=F,
Rowv=F,cexRow=0.6,cexCol=0.6,dendrogram =c('none'),
key=TRUE,keysize=1)##lhei=c(2.5,5.0),lwid=c(2.5,5.0)
library(corrplot)
M <- cor(mtcars)
corrplot(M, method = "circle")
########################################################################
#### Plot-2 - direct IRs ###################################
##############################################################
require(ggplot2)
## Read ###
setwd("/new_data/data2/homes/kakrana/3.ProjectR/10.Asparagus/2.figs/IRplot")
adata <- read.delim2("direct.consensus.merged.size.mod.txt",header=T)
names(adata);dim(adata)
adata[1:15,]
adata$Abun.2 = as.numeric(as.character(adata$Abun.2)) ## Data transformed to numerical, required for floating number
adata$Abun = as.numeric(as.character(adata$Abun)) ## Data transformed to numerical, required for floating number
adata$Abun.sqrt = as.numeric(as.character(adata$Abun.sqrt)) ## Data transformed to numerical, required for floating number
adata[1:32,]
amax = max(adata$Abun.sqrt)
bmin = min(adata$Abun.sqrt)
amax;bmin
### Prepare ###
maxpos = 554 ## Length from left to where plot is to be done
plot.data = adata[adata$Pos <= maxpos & (adata$Abun.sqrt < -1 | adata$Abun.sqrt > 1),]
abreaks = seq(from = 4, to = maxpos, by = 24)
bbreaks = seq(from = 1, to = maxpos, by = 24)
xbreaks = c(abreaks,bbreaks)
yabreaks = (sqrt(seq(from = 30000, to = amax*amax, by = 60000)));yabreaks
ybbreaks = (sqrt(seq(from = 30000, to = bmin*bmin, by = 60000)))*-1;ybbreaks
ybreaks=c(yabreaks,ybbreaks)
## Geometric point #########
p1 = ggplot(data=plot.data) ## alpha=Max.Coef
p1 + geom_point(data=plot.data,aes(x=Pos,y=Abun.sqrt,colour= as.factor(Size),alpha = abs(Abun.2)),size=2)+
geom_hline(yintercept = c(-1,1), color = "grey50")+
scale_x_continuous(limits=c(1,maxpos),breaks=xbreaks)+
scale_y_continuous(limits=c(-450,650),breaks=ybreaks)+
scale_colour_manual(values = c("21" = "grey50","22" = "grey50","23" = "grey50","24"="indianred1"))+
geom_line(data=plot.data[plot.data$Size == 24 & plot.data$Abun.sqrt > 0,],
aes(x=Pos,y=Abun.sqrt),size=0.1,fill="coral")+
geom_line(data=plot.data[plot.data$Size == 24 & plot.data$Abun.sqrt < 0,],
aes(x=Pos,y=Abun.sqrt),size=0.1,fill="coral")+
theme_bw()+
theme(axis.text.x = element_text(size=8,angle=45,hjust = 1),panel.grid.minor.x = element_line(colour='grey100'),
panel.grid.minor.y = element_line(colour='grey98'),panel.grid.major.x = element_line(colour='grey98'),
panel.grid.major.y = element_line(colour='grey88'))+
# Add cartesian specific breaks, this is added on second turn, start from P1+ggplot, and rerun from p1+geom_point
for (i in abreaks){
p1 = p1+geom_segment(x=i,y=1,xend=i,yend=Inf,linetype = 3,color = "grey88",size=0.1)
p1 = p1+geom_segment(x=i-3,y=-1,xend=i-3,yend=-Inf,linetype = 3,color = "grey88",size=0.1)
}
######################################################################################
## PCA Plots- All Affy ##############################################
library("FactoMineR")
library("factoextra")
require("scatterplot3d")
require("car")
setwd("/Users/atul/Google Drive/3.Project-R/1.iSyTE/co-relation")
af.data.all = (read.table("AF_all_exp.txt",sep= "\t",header=TRUE,row.names=1,as.is=TRUE)); af.data.all[1:5,1:5]
## Method 1 , generates a lot of info
af.pca = PCA(af.data.all[,1:34], graph = FALSE);af.pca ## Method 1 , generates a lot of info
af.pca.mat = af.pca$var$cor
fviz_screeplot(af.pca, addlabels = TRUE, ylim = c(0, 50)) ## Shows which PCAs are more informative (usually first 3)
## Method 2
af.prcomp = prcomp(af.data.all[,1:34], scale = TRUE);af.prcomp
af.pca.mat = af.prcomp$rotation
af.pca.mat <- cbind(af.pca.mat, c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,3,3,3));af.pca.mat ## Stage-specific labels
# af.pca.mat <- cbind(af.pca.mat, c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,
# 3,3,3,3,3,3,3,4,4,4,4,4,5,5,5));af.pca.mat ## refines stage-specific labels
# colors <- brewer.pal(n=8, name="Dark2")
colors = colorRampPalette(c("#2ecc71","#e74c3c","#34495e"))(3)
# af.pca.mat <- cbind(af.pca.mat, c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,5,5,6,6,
# 7,7,7,7,8,8,8,9,9,10,10,10,11,11,11));af.pca.mat ## Time-specific labels
# colors <- brewer.pal(n=11, name="Set3")
colnames(af.pca.mat)[35] = c("grp");af.pca.mat
## Plot first three PCA
library("RColorBrewer")
scatter3d(x = af.pca.mat[,1], y = af.pca.mat[,2], z = af.pca.mat[,3], grid = FALSE, surface=F, ellipsoid = F,
group = as.factor(af.pca.mat[,35]),labels = rownames(af.pca.mat),id.n=nrow(af.pca.mat), level = 0.6,
xlab = "PCA1", ylab = "PCA2",zlab = "PCA3", axis.scales = FALSE, surface.col = colors,
ellipsoid.alpha = 0.1, parallel =F)
## w/o labels
scatter3d(x = af.pca.mat[,1], y = af.pca.mat[,2], z = af.pca.mat[,3], grid = FALSE, surface=F, ellipsoid = F,
group = as.factor(af.pca.mat[,35]), level = 0.6,
xlab = "PCA1", ylab = "PCA2",zlab = "PCA3", axis.scales = FALSE, surface.col = colors,
ellipsoid.alpha = 0.1, parallel =F, sphere.size = 1.8)
# Graph of variables: default plot
fviz_pca_var(af.pca,geom = c("point", "text"), col.var = "black")
###############################################
###### Aspa Bean plot - relative enrichment
require(ggplot2)
setwd("/new_data/data2/homes/kakrana/3.ProjectR/10.Asparagus/2.figs")
adata <- read.delim("24Phas.v2.forBoxplot.txt",sep= "\t",header=TRUE,row.names=1,as.is=TRUE)
names(adata);dim(adata);adata[1:5,1:5]
## Extract stages, add factor, and rbind
pre = adata[,8];pre[1:5] ## Aspa
agrp = rep(1,length(pre))
pre.data = cbind(pre,agrp)
colnames(pre.data) = c("ratio","grp")
pre.data[1:5,]
mei = adata[,9];mei[1:5] ## Aspa
bgrp = rep(2,length(mei))
mei.data = cbind(mei,bgrp)
colnames(mei.data) = c("ratio","grp")
mei.data[1:5,]
post = adata[,10];post[1:5] ## Aspa
cgrp = rep(3,length(post))
post.data = cbind(post,cgrp)
colnames(post.data) = c("ratio","grp")
post.data[1:5,]
post2 = adata[,11];post2[1:5] ## Aspa
dgrp = rep(4,length(post2))
post2.data = cbind(post2,dgrp)
colnames(post2.data) = c("ratio","grp")
post2.data[1:5,]
post3 = adata[,12];post2[1:5] ## Aspa
egrp = rep(5,length(post3))
post3.data = cbind(post3,egrp)
colnames(post3.data) = c("ratio","grp")
post3.data[1:5,]
plot.data1 = data.frame(rbind(pre.data,mei.data,post.data,post2.data,post3.data))
plot.data1[1:5,];dim(plot.data1)
## Filters
plot.data = plot.data1[plot.data1$ratio > 3,];dim(plot.data)
## Plot
p2 = ggplot(data=plot.data,aes(x = factor(grp), y=ratio))
p2+geom_violin(width=0.7,colour="firebrick",fill="firebrick",Trim = FALSE)+
theme_bw()+
theme(panel.grid.minor.y = element_line(colour='white'),
panel.grid.major.y = element_line(colour='grey48'))
p2+geom_boxplot(notch = FALSE,width=0.5,colour="firebrick",fill="firebrick")+
geom_point(shape=1)+
theme_bw()+
theme(panel.grid.minor.y = element_line(colour='white'),
panel.grid.major.y = element_line(colour='grey48'))