forked from tmbdev/clstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-2d.cc
162 lines (145 loc) · 3.92 KB
/
test-2d.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include <assert.h>
#include <math.h>
#include <fstream>
#include <iostream>
#include <iostream>
#include <memory>
#include <regex>
#include <set>
#include <sstream>
#include <vector>
#include "clstm.h"
#include "clstmhl.h"
#include "extras.h"
#include "pstring.h"
#include "utils.h"
using namespace Eigen;
using namespace ocropus;
using std::vector;
using std::map;
using std::make_pair;
using std::shared_ptr;
using std::unique_ptr;
using std::cout;
using std::ifstream;
using std::set;
using std::to_string;
using std_string = std::string;
using std_wstring = std::wstring;
using std::regex;
using std::regex_replace;
#define string std_string
#define wstring std_wstring
double state = getdenv("seed", 17.9348);
inline double randu() {
state = 189843.9384938 * state + 0.328340981343;
state -= floor(state);
return state;
}
inline double randn() {
double u1 = randu();
double u2 = randu();
double r = -2 * log(u1);
double theta = 2 * M_PI * u2;
double z0 = r * cos(theta);
return z0;
}
Float maxerr(Sequence &xs, Sequence &ys) {
Float merr = 0.0;
for (int t = 0; t < xs.size(); t++) {
for (int i = 0; i < xs.rows(); i++) {
for (int j = 0; j < ys.cols(); j++) {
Float err = fabs(xs[t].v(i, j) - ys[t].v(i, j));
merr = fmax(err, merr);
}
}
}
return merr;
}
Float meanerr(Sequence &xs, Sequence &ys) {
Float merr = 0.0;
Float count = 0.0;
for (int t = 0; t < xs.size(); t++) {
for (int i = 0; i < xs.rows(); i++) {
for (int j = 0; j < ys.cols(); j++) {
Float err = fabs(xs[t].v(i, j) - ys[t].v(i, j));
merr += err;
count += 1;
}
}
}
return merr / count;
}
void set_image(Sequence &seq, TensorMap3 image) {
// image: (h, w, d) sequence: (t, d, h)
int h = image.dimension(0);
int w = image.dimension(1);
int d = image.dimension(2);
seq.resize(w, d, h);
TensorMap4 t = seq.map4();
seq.zero();
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
for (int k = 0; k < d; k++) t(k, i, 0, j) = image(i, j, k);
}
void get_image(Tensor2 &image, Sequence &seq, int plane) {
// image: (h, w, d) sequence: (t, d, h)
int h = seq.cols();
int w = seq.size();
image.resize(h, w);
TensorMap4 t = seq.map4();
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++) image(i, j) = t(plane, i, 0, j);
}
void save_seq_as_image(const string &name, Sequence &seq, int plane = 0) {
Tensor2 image;
get_image(image, seq, plane);
write_png(name.c_str(), image());
}
void gen_image(Sequence &input, Sequence &target) {
int w = 256;
int h = 256;
EigenTensor3 image(w, h, 1);
image.setZero();
int r = 50;
int x = int(randu() * (w - r));
int y = int(randu() * (h - r));
for (int i = 0; i < r; i++)
for (int j = 0; j < r; j++) image(x + i, y + j, 0) = 1.0;
set_image(target, image);
for (int i = 0; i < w; i++)
for (int j = 0; j < h; j++) image(i, j, 0) += randn();
set_image(input, image);
}
int main1(int argc, char **argv) {
int ntrain = getienv("ntrain", 100000);
Network net =
make_net("twod", {{"ninput", 1}, {"nhidden", 3}, {"noutput", 1}});
double lr = getdenv("lrate", 1e-4);
net->setLearningRate(lr, 0.9);
Sequence inputs, targets;
for (int trial = 0; trial < ntrain; trial++) {
gen_image(inputs, targets);
set_inputs(net, inputs);
net->forward();
if (trial % 100 == 0)
print(trial, maxerr(net->outputs, targets),
meanerr(net->outputs, targets));
set_targets(net, targets);
net->backward();
sgd_update(net);
if (trial % 1000 == 0) {
string base = "_";
base += std::to_string(trial);
save_seq_as_image(base + "_inputs.png", inputs);
save_seq_as_image(base + "_outputs.png", net->outputs);
save_seq_as_image(base + "_targets.png", targets);
print("saved", base);
}
}
return 0;
}
int main(int argc, char **argv) {
TRY { main1(argc, argv); }
CATCH(const char *message) { cerr << "FATAL: " << message << endl; }
}