forked from tmbdev/clstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-timing.cc
124 lines (114 loc) · 3.1 KB
/
test-timing.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <assert.h>
#include <math.h>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "clstm.h"
#include "clstm_compute.h"
#include "extras.h"
#include "utils.h"
using namespace std;
using std::vector;
using std::shared_ptr;
using std::unique_ptr;
using std::to_string;
using std::make_pair;
using std::cout;
using std::stoi;
using namespace Eigen;
using namespace ocropus;
using std_string = std::string;
#define string std_string
typedef vector<Params> ParamVec;
double sqr(double x) { return x * x; }
double randu() {
static double state = 0.23498023948923408293248;
state = 179.93489901293380918 * state + 0.719408230890328424;
state -= floor(state);
return state;
}
double uniform(double lo = 0.0, double hi = 1.0) {
double x = fabs(randu());
double result = (hi - lo) * x + lo;
PRINT(result);
return result;
}
double exp_uniform(double lo = 1.0, double hi = 100.0) {
assert(lo > 0 && hi > lo);
double result = exp(uniform(log(lo), log(hi)));
PRINT(result);
return result;
}
void randten(Tensor2 &a, int n, int m) {
a.resize(n, m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a(i, j) = randu();
}
}
}
vector<vector<int>> conditions;
struct Timing {
string prefix;
Context *context;
Tensor2 a, b, c;
Timing() {}
Timing(string prefix, Context *context) : prefix(prefix), context(context) {}
void operator<<=(function<void(Tensor2 &, Tensor2 &, Tensor2 &)> f) {
for (int i = 0; i < conditions.size(); i++) {
double total = 0.0;
double count = 0;
int n = conditions[i][0];
int l = conditions[i][1];
int m = conditions[i][2];
assert(n > 0 && n < 100000);
assert(l > 0 && l < 100000);
assert(m > 0 && m < 100000);
for (int k = 0; k < 10; k++) {
a.context = context;
b.context = context;
c.context = context;
randten(a, n, l);
randten(b, l, m);
c.resize(n, m);
double start = now();
f(c, a, b);
double finish = now();
total += finish - start;
count++;
}
print(prefix, n, l, m, total / count);
}
}
};
inline Eigen::array<Eigen::IndexPair<int>, 1> axispairs(int i, int j) {
Eigen::array<Eigen::IndexPair<int>, 1> result = {Eigen::IndexPair<int>(i, j)};
return result;
}
int main(int argc, char **argv) {
int ntrial = getienv("ntrial", 1000);
int maxmat = getienv("maxmat", 1000);
for (int i = 0; i < ntrial; i++) {
int n, l, m;
n = exp_uniform(1, maxmat);
l = exp_uniform(1, maxmat);
m = exp_uniform(1, maxmat);
assert(n > 0 && n < 100000);
assert(l > 0 && l < 100000);
assert(m > 0 && m < 100000);
vector<int> v{n, l, m};
conditions.push_back(v);
}
TRY {
Timing nocontext("none", new Context());
nocontext <<= [](Tensor2 &c, Tensor2 &a, Tensor2 &b) {
c = a().contract(b(), axispairs(1, 0));
};
Timing threaded("threaded", new ThreadedContext(4));
threaded <<= [](Tensor2 &c, Tensor2 &a, Tensor2 &b) {
c = a().contract(b(), axispairs(1, 0));
};
}
CATCH(const char *message) { print("ERROR", message); }
}