forked from google/gemmlowp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpack.h
444 lines (389 loc) · 17.6 KB
/
pack.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// pack.h: packing blocks of the LHS and RHS into the data layout
// that is expected by compute.h and eventually by kernels.
// Because this data layout depends on the kernel format, code here
// is templated in KernelLhsFormat/KernelRhsFormat.
//
// Readers note: an important theme around here is that we try hard
// to handle both Lhs and Rhs with a single piece of code. We indifferently
// refer to the Lhs and Rhs as a 'Side'. Instead of addressing matrices
// by (row, column) indices, we address them by (width, depth), as explained
// in kernel.h. This allows us to handle both Lhs and Rhs on an equal footing,
// at once.
#ifndef GEMMLOWP_INTERNAL_PACK_H_
#define GEMMLOWP_INTERNAL_PACK_H_
#include <cstring>
#include "allocator.h"
#include "block_params.h"
#include "common.h"
#include "kernel.h"
namespace gemmlowp {
// A PackedSideBlock instance is a packed block of either the LHS or RHS
// (whence the generic 'Side' name).
//
// 'Packed' means that it is laid out in the storage order that
// is expected by the specified kernel format. From a block of the input
// LHS or RHS matrix, one obtains a PackedSideBlock by calling PackLhs()
// or PackRhs().
template <typename tKernelSideFormat>
class PackedSideBlock {
public:
typedef tKernelSideFormat KernelSideFormat;
PackedSideBlock(Side side, Allocator* allocator,
const BlockParams& block_params)
: allocator_(allocator), pos_(0) {
GetSideBlockParams(side, ¶ms_, block_params);
data_handle_ =
allocator_->Reserve<std::uint8_t>(params_.l2_width * params_.l2_depth);
sums_of_each_slice_handle_ =
allocator_->Reserve<std::int32_t>(params_.l2_width);
}
~PackedSideBlock() {}
void seek_run(int start_width, int start_depth) const {
int kernel_run_depth =
std::min<int>(params_.l1_depth, params_.l2_depth - start_depth);
pos_ = params_.l2_width * start_depth + start_width * kernel_run_depth;
}
void seek_next_cell() const { pos_ += KernelSideFormat::Cell::kSize; }
void seek_forward_n_cells(int n) const {
pos_ += n * KernelSideFormat::Cell::kSize;
}
// TODO(suharshs): The datatype can now be int8 as well. We could introduce a
// new int8 current_data impl as well. This change would propagate to all pack
// impls and the Kernel::Run API, which all assume uint8. For now we leave
// this as-is pending future refactor.
const std::uint8_t* current_data() const {
return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
}
std::uint8_t* current_data() {
return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
}
std::int32_t* sums_of_each_slice() {
return allocator_->GetPointer<std::int32_t>(sums_of_each_slice_handle_);
}
const std::int32_t* sums_of_each_slice() const {
return allocator_->GetPointer<const std::int32_t>(
sums_of_each_slice_handle_);
}
const SideBlockParams& params() const { return params_; }
private:
// The block size parameters that this PackedSizeBlock follows.
// The L2 parameters determine its overall size, while the L1 parameters,
// together with the kernel format template parameter, determine
// the fine details of the storage/traversal order.
SideBlockParams params_;
// Pointer to the allocator provided by the caller. Not owned.
// The Allocator is assumed to outlive the PackedSideBlock.
Allocator* const allocator_;
// Handle on the buffer backing this packed block. Owned.
Allocator::Handle data_handle_;
// Handle on the additional buffer backing the vector of sums of slices
// associated with this block. Owned.
Allocator::Handle sums_of_each_slice_handle_;
// pos_ is the current position in the buffer, which we access
// sequentially, like a file.
// The idea is that we pack data in the same order as it is
// going to be traversed during the computation, which for
// cache-friendliness reasons is complicated to random-access,
// as the offsets calculations would be intricate. So we
// give up random-access addressing, and instead content ourselves
// with sequential access.
//
// pos_ is mutable because during the computation we will want to
// be able to iterate on the data in a const PackedSideBlock.
mutable int pos_;
};
// WidthMajor and DepthMajor are custom phrases modelled after the
// standard terminology 'row-major' and 'column-major'. Their meaning
// should be transparent once one has read the explanation in kernel.h:
// for example, in the Lhs, the 'width' dimension is the rows dimension,
// so there WidthMajor means RowMajor, while in the Rhs it is the opposite.
// Another way to put it: WidthMajor means that contiguous storage is used
// for entries having the same 'width' index.
enum class SideMapOrder { WidthMajor, DepthMajor };
// Similar to MatrixMap from map.h, but in terms of width/depth instead of
// rows/columns. Used to address blocks of the input LHS/RHS matrices when
// packing them.
template <typename tScalar, SideMapOrder tOrder>
class SideMap {
public:
typedef tScalar Scalar;
static constexpr SideMapOrder kOrder = tOrder;
SideMap(Scalar* data, int width, int depth, int stride)
: data_(data), width_(width), depth_(depth), stride_(stride) {}
SideMap(Scalar* data, int width, int depth)
: data_(data), width_(width), depth_(depth) {
stride_ = kOrder == SideMapOrder::WidthMajor ? depth_ : width_;
}
SideMap(const SideMap& other) = default;
SideMap& operator=(const SideMap& other) = default;
int width() const { return width_; }
int depth() const { return depth_; }
int stride() const { return stride_; }
int width_stride() const {
return kOrder == SideMapOrder::DepthMajor ? 1 : stride_;
}
int depth_stride() const {
return kOrder == SideMapOrder::WidthMajor ? 1 : stride_;
}
Scalar* data() const { return data_; }
Scalar* data(int w, int d) const {
return data_ + w * width_stride() + d * depth_stride();
}
Scalar operator()(int w, int d) const { return *data(w, d); }
Scalar& operator()(int w, int d) { return *data(w, d); }
SideMap block(int start_width, int start_depth, int block_width,
int block_depth) const {
assert(start_width >= 0);
assert(start_width + block_width <= width_);
assert(start_depth >= 0);
assert(start_depth + block_depth <= depth_);
return SideMap(data(start_width, start_depth), block_width, block_depth,
stride_);
}
private:
Scalar* data_; // not owned.
int width_, depth_, stride_;
};
// A PackingRegisterBlock is a small fixed-size block of a matrix being
// packed. This class is the generic non-optimized implementation,
// it is inherited by the generic implementation of PackingRegisterBlock,
// which may be overriden by template specialization. Overriding it is how
// one may provide optimized packing code paths.
//
// The packing of a block proceeds in two steps:
// 1. Ensuring that we have a complete block of source data, i.e. a block of
// the compile-time prescribed size. This is where we handle unaligned
// boundaries: if we don't have a complete block of source data, then
// we copy and zero-extend it into a local temporary (complete_src_),
// see MakeCompleteSrc. In the generic case, we do have a complete block,
// so we just use it in-place, see UseCompleteSrcInPlace.
// 2. Packing a complete block into the destination, see Pack. This is the
// most critical part, so it's convenient that unaligned boundaries have
// already been handled in step 1.
template <typename SrcMapType, typename PackedSideBlock>
class PackingRegisterBlockBase {
public:
typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
typedef typename KernelSideFormat::InputScalar KernelInputScalar;
typedef typename KernelSideFormat::Scalar KernelScalar;
static constexpr int kCells = KernelSideFormat::kCells;
static constexpr int kCellWidth = CellFormat::kWidth;
static constexpr int kKernelWidth = CellFormat::kWidth * kCells;
static constexpr int kCellDepth = CellFormat::kDepth;
static constexpr int kCellSize = CellFormat::kSize;
static constexpr SideMapOrder kSrcOrder = SrcMapType::kOrder;
static constexpr int kZeroPointInputValue =
ZeroPointInputValue<KernelInputScalar, KernelScalar>::kValue;
PackingRegisterBlockBase() : complete_src_(nullptr, 0, 0, 0) {}
protected:
// The source data that's ready for packing. May point to
// in-place actual source data if it's already a complete block,
// (see UseCompleteSrcInPlace)
// or to the local buf_ below into which we copy incomplete blocks
// (see MakeCompleteSrc)
SrcMapType complete_src_;
// Temporary buffer for loading incomplete blocks to,
// in the source storage order
std::uint8_t buf_[kKernelWidth * kRegisterSize];
public:
// Selects a block if in-place source data that's already a complete block.
void UseCompleteSrcInPlace(const SrcMapType& src) { complete_src_ = src; }
// Copies an incomplete block of source data into a local temporary
// complete block by zero-extending it.
void MakeCompleteSrc(const SrcMapType& src) {
memset(buf_, kZeroPointInputValue, kKernelWidth * kRegisterSize);
if (kSrcOrder == SideMapOrder::WidthMajor) {
for (int w = 0; w < src.width(); w++) {
memcpy(buf_ + w * kRegisterSize, src.data(w, 0), src.depth());
}
} else {
assert(kSrcOrder == SideMapOrder::DepthMajor);
for (int d = 0; d < src.depth(); d++) {
memcpy(buf_ + d * kKernelWidth, src.data(0, d), src.width());
}
}
// Since the KernelInputScalar type may not be uint8, we need to cast buf_.
complete_src_ = SrcMapType(reinterpret_cast<KernelInputScalar*>(buf_),
kKernelWidth, kRegisterSize);
}
// Packs a complete block into the destination. This is the most
// critical part and the part that we most typically want to
// override in architecture-specific optimized specializations.
void Pack(PackedSideBlock* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
for (int cell_start_depth = 0; cell_start_depth < kRegisterSize;
cell_start_depth += kCellDepth) {
for (int cell_start_width = 0; cell_start_width < kKernelWidth;
cell_start_width += kCellWidth) {
std::int32_t* cell_sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + cell_start_width;
const SideMap<const std::uint8_t, kSrcOrder> src_cell_map(
complete_src_.block(cell_start_width, cell_start_depth, kCellWidth,
kCellDepth));
for (int w = 0; w < kCellWidth; w++) {
std::int32_t sum = 0;
for (int d = 0; d < kCellDepth; d++) {
const std::uint8_t src_val = src_cell_map(w, d);
const std::int16_t kernel_val_unwrapped =
src_val - kZeroPointInputValue;
const std::uint8_t kernel_val_uint8 = kernel_val_unwrapped;
dst_ptr[OffsetIntoCell<CellFormat>(w, d)] = kernel_val_uint8;
sum += kernel_val_unwrapped;
}
cell_sums_of_each_slice_ptr[w] += sum;
}
dst_ptr += kCellSize;
}
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
template <typename SrcMapType, typename PackedSideBlock>
class PackingRegisterBlock
: public PackingRegisterBlockBase<SrcMapType, PackedSideBlock> {};
// Large-scale implementation of packing.
template <typename SrcMapType, typename PackedSideBlock>
class PackSideBlockImpl {
public:
typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static constexpr int kCells = KernelSideFormat::kCells;
static constexpr int kCellWidth = CellFormat::kWidth;
static constexpr int kKernelWidth = CellFormat::kWidth * kCells;
static constexpr int kCellDepth = CellFormat::kDepth;
typedef PackingRegisterBlock<SrcMapType, PackedSideBlock>
PackingRegisterBlockType;
PackSideBlockImpl(PackedSideBlock* packed_side_block,
const SrcMapType& src_map)
: packed_side_block_(packed_side_block), src_map_(src_map) {}
PackedSideBlock* packed_side_block() const { return packed_side_block_; }
const SrcMapType& src_map() const { return src_map_; }
// The public entry point to pack a block.
void PackL2() {
memset(packed_side_block_->sums_of_each_slice(), 0,
sizeof(std::int32_t) * packed_side_block_->params().l2_width);
for (int d = 0; d < src_map_.depth();
d += packed_side_block_->params().l1_depth) {
int ds = std::min<int>(packed_side_block_->params().l1_depth,
src_map_.depth() - d);
for (int w = 0; w < src_map_.width();
w += packed_side_block_->params().l1_width) {
int ws = std::min<int>(packed_side_block_->params().l1_width,
src_map_.width() - w);
PrefetchL1(w, ws, d, ds);
PackL1(w, ws, d, ds);
}
}
}
protected:
// The intermediate-level loops, between PackL2 and PackRun.
void PackL1(int start_width, int width, int start_depth, int depth) {
for (int w = 0; w < width; w += kKernelWidth) {
int ws = std::min(+kKernelWidth, width - w);
packed_side_block_->seek_run(start_width + w, start_depth);
PackRun(start_width + w, ws, start_depth, depth);
}
}
// Prefetches the data that will be read by PackL1.
void PrefetchL1(int start_width, int width, int start_depth, int depth) {
if (SrcMapType::kOrder == SideMapOrder::WidthMajor) {
for (int d = 0; d < depth; d += kDefaultCacheLineSize) {
for (int w = 0; w < width; w += 1) {
Prefetch(src_map_.data(start_width + w, start_depth + d));
}
}
} else {
for (int d = 0; d < depth; d++) {
for (int w = 0; w < width; w += kDefaultCacheLineSize) {
Prefetch(src_map_.data(start_width + w, start_depth + d));
}
}
}
}
// PackRun packs only a run i.e. is the inner loop in the depth dimension.
void PackRun(int start_width, int width, int start_depth, int depth) {
PackingRegisterBlockType b;
if (width == kKernelWidth) {
const int register_aligned_depth = RoundDown<kRegisterSize>(depth);
if (register_aligned_depth) {
for (int d = 0; d < register_aligned_depth; d += kRegisterSize) {
b.UseCompleteSrcInPlace(src_map_.block(start_width, start_depth + d,
width, kRegisterSize));
b.Pack(packed_side_block_, start_width);
}
}
if (register_aligned_depth < depth) {
b.MakeCompleteSrc(
src_map_.block(start_width, start_depth + register_aligned_depth,
width, depth - register_aligned_depth));
b.Pack(packed_side_block_, start_width);
}
} else {
assert(width < kKernelWidth);
for (int d = 0; d < depth; d += kRegisterSize) {
const int ds = std::min(+kRegisterSize, depth - d);
b.MakeCompleteSrc(
src_map_.block(start_width, start_depth + d, width, ds));
b.Pack(packed_side_block_, start_width);
}
}
}
// The PackedSideBlock being packed, i.e. the 'destination'.
PackedSideBlock* const packed_side_block_;
// A map on the block of the original matrix block being packed,
// i.e. the 'source'.
const SrcMapType& src_map_;
};
// Packs a block of the input LHS matrix, into a PackedSideBlock.
template <typename PackedSideBlock, typename MatrixMapType>
void PackLhs(PackedSideBlock* dst, const MatrixMapType& src) {
ScopedProfilingLabel label("pack LHS");
static const SideMapOrder kSideMapOrder =
MatrixMapType::kOrder == MapOrder::RowMajor ? SideMapOrder::WidthMajor
: SideMapOrder::DepthMajor;
typedef typename MatrixMapType::Scalar Scalar;
typedef SideMap<Scalar, kSideMapOrder> SideMapType;
SideMapType src_side_map(src.data(), src.rows(), src.cols(), src.stride());
typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
ImplType impl(dst, src_side_map);
impl.PackL2();
}
// Packs a block of the input RHS matrix, into a PackedSideBlock.
template <typename PackedSideBlock, typename MatrixMapType>
void PackRhs(PackedSideBlock* dst, const MatrixMapType& src) {
ScopedProfilingLabel label("pack RHS");
static const SideMapOrder kSideMapOrder =
MatrixMapType::kOrder == MapOrder::ColMajor ? SideMapOrder::WidthMajor
: SideMapOrder::DepthMajor;
typedef typename MatrixMapType::Scalar Scalar;
typedef SideMap<Scalar, kSideMapOrder> SideMapType;
SideMapType src_side_map(src.data(), src.cols(), src.rows(), src.stride());
typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
ImplType impl(dst, src_side_map);
impl.PackL2();
}
} // namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "pack_neon.h"
#elif defined(GEMMLOWP_SSE4)
#include "pack_sse.h"
#elif defined(GEMMLOWP_AVX2)
#include "pack_avx.h"
#elif defined(GEMMLOWP_MSA)
#include "pack_msa.h"
#endif
#endif // GEMMLOWP_INTERNAL_PACK_H_