-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdftb_plus_output_analysis_mymac.py
executable file
·126 lines (85 loc) · 3.35 KB
/
dftb_plus_output_analysis_mymac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import sys
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
# Define some constant
Na = 6.022140e23 # (mol)
kb_jk = 1.380649e-23 # (J/K)
kb_evk = 8.617330e-5 # (eV/K)
# Unit converter functions
def au2ev(x):
# 1 au = 27.211324 (eV)
return x * 27.211324
def au2kj(x):
# 1 au = 4.359744e-21 (kJ)
return x * 4.359744e-21
def au2kcal(x):
# 1 au = 1.042003e-21 (kcal)
return x * 1.042003e-21
energies_au = np.loadtxt('extracted_energies.out')
energies_ev = au2ev(energies_au)
gradient_norm_au = np.loadtxt('extracted_gradient_norm.out')
def plot_energy_gradient(energy, gradient, label_e):
fig=plt.figure(figsize=(7,6), dpi=600)
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
# Plot
ax1.plot(energy, linewidth=2, label='Energy', color='r')
ax2.plot(gradient, linewidth=2, label='Gradient', color='b')
# Parameters
# ax.set_xlim(0, 4)
# ax.set_ylim(2, 14)
# ax.xaxis.set_ticks(np.arange(0, 4.5, 0.5))
# ax.yaxis.set_ticks(np.arange(2, 16, 2))
ax2.set_yscale('log')
# ax1.set_xlim(0, 4.05)
# ax1.set_ylim(0, 6)
# ax2.set_ylim(0, max_y)
# ax1.xaxis.set_ticks(np.arange(0, 4.5, 0.5))
# ax1.yaxis.set_ticks(np.arange(0, 7, 1))
# ax2.yaxis.set_ticks(np.arange(0, max_y + 1, 1))
ax1.tick_params(axis='both', which='major', length=5, width=2)
ax1.tick_params(axis='both', which='minor', length=2.5, width=1)
ax2.tick_params(axis='both', which='major', length=5, width=2)
ax2.tick_params(axis='both', which='minor', length=2.5, width=1)
ax1.xaxis.set_ticks_position('both')
ax1.tick_params(axis='both', labelsize=16)
ax2.tick_params(axis='both', labelsize=16)
ax1.minorticks_on()
ax2.minorticks_on()
# ax.tick_params(axis='both', labelsize=16)
# ax.tick_params(axis='both', which='major', length=5, width=2)
# ax.tick_params(axis='both', which='minor', length=2.5, width=1)
# ax.xaxis.set_ticks_position('both')
# ax.yaxis.set_ticks_position('both')
# ax.minorticks_on()
ax1.set_xlabel('Nomber of step (count)', fontsize=20)
ax1.set_ylabel(label_e, fontsize=20)
ax2.set_ylabel('Gradient norm (H/au)', fontsize=20, rotation =-90, labelpad=25)
# ax.legend(fontsize=10, ncol=3, loc='upper center', bbox_to_anchor=(0.5, 1.15), frameon=False, labelspacing=0.2, handletextpad=0.2, columnspacing=1)
# ax1.legend(fontsize=10, loc='upper right', bbox_to_anchor=(0.9, 1), frameon=False)
l1, h1 = ax1.get_legend_handles_labels()
l2, h2 = ax2.get_legend_handles_labels()
label = l1 + l2
handle = h1 + h2
plt.legend(label, handle, fontsize=16, loc='upper right', bbox_to_anchor=(0.9, 1), frameon=False)
with PdfPages('dftb_plus_output_analysis.pdf') as pdf:
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Metadata informations
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
d = pdf.infodict()
d['Title'] = ''
d['Author'] = 'A. TETENOIRE'
'''
Plot
'''
plot_energy_gradient(energies_au, gradient_norm_au, label_e='Energy (au)')
pdf.savefig(bbox_inches='tight')
plt.close()
'''
Plot
'''
plot_energy_gradient(energies_ev, gradient_norm_au, label_e='Energy (eV)')
pdf.savefig(bbox_inches='tight')
plt.close()