diff --git a/.github/workflows/black_checker.yml b/.github/workflows/black_checker.yml deleted file mode 100644 index fac1723682..0000000000 --- a/.github/workflows/black_checker.yml +++ /dev/null @@ -1,47 +0,0 @@ -name: black-format-check - -on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches - push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches - pull_request: - branches: - - master - - development - -env: - #If STRICT is set to true, it will fail on black check fail - STRICT: false - -jobs: - - black-format-check: - runs-on: ubuntu-latest - steps: - - - name: Checkout - uses: actions/checkout@v2 - with: - submodules: recursive - - - name: Setup Python 3.7 - uses: actions/setup-python@v2 - with: - python-version: "3.7" - - - name: Install black - run: | - pip install black - - - name: Run Black Check - run: | - black --check --diff --line-length 100 ./autosklearn || ! $STRICT - black --check --diff --line-length 100 ./test || ! $STRICT - black --check --diff --line-length 100 ./examples|| ! $STRICT diff --git a/.github/workflows/dist.yml b/.github/workflows/dist.yml index 29eb0850dc..ada0593183 100644 --- a/.github/workflows/dist.yml +++ b/.github/workflows/dist.yml @@ -1,58 +1,31 @@ name: dist-check -on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches - push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches - pull_request: - branches: - - master - - development +on: [push, pull_request] jobs: dist: runs-on: ubuntu-latest - steps: - - name: Check out the repo - uses: actions/checkout@v2 - with: - submodules: recursive - + - uses: actions/checkout@v2 - name: Setup Python uses: actions/setup-python@v2 with: python-version: 3.8 - - name: Build dist run: | python setup.py sdist - - name: Twine check run: | pip install twine last_dist=$(ls -t dist/auto-sklearn-*.tar.gz | head -n 1) twine_output=`twine check "$last_dist"` if [[ "$twine_output" != "Checking $last_dist: PASSED" ]]; then echo $twine_output && exit 1;fi - - name: Install dist run: | last_dist=$(ls -t dist/auto-sklearn-*.tar.gz | head -n 1) pip install $last_dist - - name: PEP 561 Compliance run: | pip install mypy - cd .. # required to use the installed version of autosklearn - - # Note this doesnt perform mypy checks, only - # that the types are exported - if ! mypy -c "import autosklearn"; then exit 1; fi + if ! python -c "import autosklearn"; then exit 1; fi diff --git a/.github/workflows/docker-publish.yml b/.github/workflows/docker-publish.yml index 3a9af5bf94..fe8c7f154e 100644 --- a/.github/workflows/docker-publish.yml +++ b/.github/workflows/docker-publish.yml @@ -1,31 +1,24 @@ #https://help.github.com/en/actions/language-and-framework-guides/publishing-docker-images#publishing-images-to-github-packages name: Publish Docker image - on: - push: + # Push to `master` or `development` branches: - master - development - docker_workflow jobs: - push_to_registry: name: Push Docker image to GitHub Packages runs-on: ubuntu-latest - steps: - name: Check out the repo uses: actions/checkout@v2 - with: - submodules: recursive - - name: Extract branch name shell: bash run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" id: extract_branch - - name: Push to GitHub Packages uses: docker/build-push-action@v1 with: @@ -35,7 +28,6 @@ jobs: repository: automl/auto-sklearn/auto-sklearn tag_with_ref: true tags: ${{ steps.extract_branch.outputs.branch }} - - name: Push to Docker Hub uses: docker/build-push-action@v1 with: @@ -43,24 +35,19 @@ jobs: password: ${{ secrets.DOCKER_PASSWORD }} repository: mfeurer/auto-sklearn tags: ${{ steps.extract_branch.outputs.branch }} - - name: Docker Login run: docker login docker.pkg.github.com -u $GITHUB_ACTOR -p $GITHUB_TOKEN env: GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}} - - name: Pull Docker image run: docker pull docker.pkg.github.com/$GITHUB_REPOSITORY/auto-sklearn:$BRANCH env: BRANCH: ${{ steps.extract_branch.outputs.branch }} - - name: Run image run: docker run -i -d --name unittester -v $GITHUB_WORKSPACE:/workspace -w /workspace docker.pkg.github.com/$GITHUB_REPOSITORY/auto-sklearn:$BRANCH env: BRANCH: ${{ steps.extract_branch.outputs.branch }} - - name: Auto-Sklearn loaded run: docker exec -i unittester python3 -c 'import autosklearn; print(f"Auto-sklearn imported from {autosklearn.__file__}")' - - name: Run unit testing run: docker exec -i unittester python3 -m pytest -v test diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml index 3645596c7b..12c1f9f390 100644 --- a/.github/workflows/docs.yml +++ b/.github/workflows/docs.yml @@ -1,57 +1,31 @@ name: Docs - -on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches - push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches - pull_request: - branches: - - master - - development +on: [pull_request, push] jobs: - build-and-deploy: runs-on: ubuntu-latest steps: - - - name: Checkout - uses: actions/checkout@v2 - with: - submodules: recursive - + - uses: actions/checkout@v2 - name: Setup Python uses: actions/setup-python@v2 with: python-version: 3.8 - - name: Install dependencies run: | - pip install -e .[docs,examples] - + pip install -e .[docs,examples,examples_unix] - name: Make docs run: | cd doc make html - - name: Check links run: | cd doc make linkcheck - - name: Pull latest gh-pages if: (contains(github.ref, 'develop') || contains(github.ref, 'master')) && github.event_name == 'push' run: | cd .. git clone https://github.com/automl/auto-sklearn.git --branch gh-pages --single-branch gh-pages - - name: Copy new doc into gh-pages if: (contains(github.ref, 'develop') || contains(github.ref, 'master')) && github.event_name == 'push' run: | @@ -59,7 +33,6 @@ jobs: cd ../gh-pages rm -rf $branch_name cp -r ../auto-sklearn/doc/build/html $branch_name - - name: Push to gh-pages if: (contains(github.ref, 'develop') || contains(github.ref, 'master')) && github.event_name == 'push' run: | diff --git a/.github/workflows/isort_checker.yml b/.github/workflows/isort_checker.yml deleted file mode 100644 index 4f1f03f5a8..0000000000 --- a/.github/workflows/isort_checker.yml +++ /dev/null @@ -1,45 +0,0 @@ -name: isort-check - -on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches - push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches - pull_request: - branches: - - master - - development - -env: - #If STRICT is set to true, it will fail on isort check fail - STRICT: false - -jobs: - - isort-format-check: - runs-on: ubuntu-latest - steps: - - - name: Checkout - uses: actions/checkout@v2 - with: - submodules: recursive - - - name: Setup Python 3.7 - uses: actions/setup-python@v2 - with: - python-version: "3.7" - - - name: Install isort - run: | - pip install isort - - - name: Run isort Check - run: | - isort --check-only autosklearn || ! $STRICT diff --git a/.github/workflows/pre-commit.yaml b/.github/workflows/pre-commit.yaml index 03ca861dff..eabada7e8d 100644 --- a/.github/workflows/pre-commit.yaml +++ b/.github/workflows/pre-commit.yaml @@ -1,39 +1,20 @@ name: pre-commit -on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches - push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches - pull_request: - branches: - - master - - development +on: [push, pull_request] jobs: run-all-files: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - with: - submodules: recursive - - name: Setup Python 3.7 uses: actions/setup-python@v2 with: python-version: 3.7 - - name: Install pre-commit run: | pip install pre-commit pre-commit install - - name: Run pre-commit run: | pre-commit run --all-files diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml index 4a9feba75f..513d8ff07f 100644 --- a/.github/workflows/pytest.yml +++ b/.github/workflows/pytest.yml @@ -1,138 +1,102 @@ name: Tests on: - # Manually triggerable in github - workflow_dispatch: - - # When a push occurs on either of these branches push: - branches: - - master - - development - - # When a push occurs on a PR that targets these branches pull_request: - branches: - - master - - development - schedule: - # Every day at 7AM UTC - - cron: '0 07 * * *' - -env: - - # Arguments used for pytest - pytest-args: >- - --forked - --durations=20 - --timeout=300 - --timeout-method=thread - -s - - # Arguments used for code-cov which is later used to annotate PR's on github - code-cov-args: >- - --cov=autosklearn - --cov-report=xml + # Every Monday at 7AM UTC + - cron: '0 07 * * 1' jobs: - ubuntu: - - name: ${{ matrix.os }}-${{ matrix.python-version }}-${{ matrix.kind }} - runs-on: ${{ matrix.os }} + runs-on: ubuntu-20.04 strategy: - fail-fast: false matrix: - os: [windows-latest, macos-latest, ubuntu-latest] - python-version: ['3.7', '3.8', '3.9', '3.10'] - kind: ['conda', 'source', 'dist'] - - exclude: - # Exclude all configurations *-*-dist, include one later - - kind: 'dist' - - # Exclude windows as bash commands wont work in windows runner - - os: windows-latest - - # Exclude macos as there are permission errors using conda as we do - - os: macos-latest - + python-version: [3.7, 3.8, 3.9] + use-conda: [true, false] + use-dist: [false] include: - # Add the tag code-cov to ubuntu-3.7-source - - os: ubuntu-latest - python-version: 3.7 - kind: 'source' + - python-version: 3.8 code-cov: true - - # Include one config with dist, ubuntu-3.7-dist - - os: ubuntu-latest - python-version: 3.7 - kind: 'dist' + - python-version: 3.7 + use-conda: false + use-dist: true + fail-fast: false steps: - - name: Checkout - uses: actions/checkout@v2 - with: - submodules: recursive - + - uses: actions/checkout@v2 - name: Setup Python ${{ matrix.python-version }} uses: actions/setup-python@v2 + # A note on checkout: When checking out the repository that + # triggered a workflow, this defaults to the reference or SHA for that event. + # Otherwise, uses the default branch (master) is used. with: python-version: ${{ matrix.python-version }} - - name: Conda install - if: matrix.kind == 'conda' + - name: Conda Install test dependencies + if: matrix.use-conda == true run: | # Miniconda is available in $CONDA env var $CONDA/bin/conda create -n testenv --yes pip wheel gxx_linux-64 gcc_linux-64 swig python=${{ matrix.python-version }} $CONDA/envs/testenv/bin/python3 -m pip install --upgrade pip $CONDA/envs/testenv/bin/pip3 install -e .[test] - - name: Source install - if: matrix.kind == 'source' + - name: Install test dependencies + if: matrix.use-conda == false && matrix.use-dist == false run: | python -m pip install --upgrade pip + if [[ `python -c 'import platform; print(platform.python_version())' | cut -d '.' -f 2` -eq 6 ]]; then + # Numpy 1.20 dropped suppert for Python3.6 + pip install "numpy<=1.19" + fi pip install -e .[test] + sudo apt-get update + sudo apt-get remove swig + sudo apt-get install swig3.0 + sudo ln -s /usr/bin/swig3.0 /usr/bin/swig - - name: Dist install - if: matrix.kind == 'dist' + - name: Dist Install test dependencies + if: matrix.use-conda == false && matrix.use-dist == true run: | python -m pip install --upgrade pip + sudo apt-get update + sudo apt-get remove swig + sudo apt-get install swig3.0 + sudo ln -s /usr/bin/swig3.0 /usr/bin/swig + # We need to install for the dependencies, like pytest python setup.py sdist last_dist=$(ls -t dist/auto-sklearn-*.tar.gz | head -n 1) pip install $last_dist[test] - - name: Store git status + - name: Store repository status id: status-before run: | echo "::set-output name=BEFORE::$(git status --porcelain -b)" - - name: Tests + - name: Conda Run tests timeout-minutes: 60 + if: matrix.use-conda == true run: | export OPENBLAS_NUM_THREADS=1 export OMP_NUM_THREADS=1 export MKL_NUM_THREADS=1 + # We activate conda as metalearning uses python directly, so we need + # to change the default python + export PATH="$CONDA/envs/testenv/bin:$PATH" + if [ ${{ matrix.code-cov }} ]; then codecov='--cov=autosklearn --cov-report=xml'; fi + $CONDA/envs/testenv/bin/python3 -m pytest --durations=20 --timeout=300 --timeout-method=thread -v $codecov test - if [[ ${{ matrix.kind }} == 'conda' ]]; then - PYTHON=$CONDA/envs/testenv/bin/python3 - - # As one of the tests runs a subprocess command and calls `python3`, we must - # explicitly add it to the path - export PATH="$CONDA/envs/testenv/bin:$PATH" - - else - PYTHON=$(which python3) - fi - - if [ ${{ matrix.code-cov }} ]; then - $PYTHON -m pytest ${{ env.pytest-args }} ${{ env.code-cov-args }} test - else - $PYTHON -m pytest ${{ env.pytest-args }} test - fi + - name: Run tests + timeout-minutes: 60 + if: matrix.use-conda == false + run: | + export OPENBLAS_NUM_THREADS=1 + export OMP_NUM_THREADS=1 + export MKL_NUM_THREADS=1 + if [ ${{ matrix.code-cov }} ]; then codecov='--cov=autosklearn --cov-report=xml'; fi + pytest --durations=20 --timeout=300 --timeout-method=thread -v $codecov test - name: Check for files left behind by test if: ${{ always() }} @@ -148,7 +112,7 @@ jobs: - name: Upload coverage if: matrix.code-cov && always() - uses: codecov/codecov-action@v2 + uses: codecov/codecov-action@v1 with: fail_ci_if_error: true verbose: true diff --git a/.github/workflows/stale.yaml b/.github/workflows/stale.yaml index d95d344674..45422d04eb 100644 --- a/.github/workflows/stale.yaml +++ b/.github/workflows/stale.yaml @@ -1,11 +1,9 @@ name: 'Close stale issues' - on: schedule: - - cron: '0 7 * * *' + - cron: '30 1 * * *' jobs: - stale: runs-on: ubuntu-latest steps: @@ -13,14 +11,12 @@ jobs: with: days-before-stale: 60 days-before-close: 7 - stale-issue-label: 'stale' - only-issue-labels: 'Answered,Feedback-Required,invalid,wontfix' - exempt-all-milestones: true - stale-issue-message: > This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs for the next 7 days. Thank you for your contributions. - close-issue-message: > This issue has been automatically closed due to inactivity. + stale-issue-label: 'stale' + only-issue-labels: 'Answered,Feedback-Required,invalid,wontfix' + exempt-all-milestones: true diff --git a/.gitmodules b/.gitmodules deleted file mode 100644 index 28a5492b66..0000000000 --- a/.gitmodules +++ /dev/null @@ -1,3 +0,0 @@ -[submodule "autosklearn/automl_common"] - path = autosklearn/automl_common - url = https://github.com/automl/automl_common diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index a067f4b155..38f0280a32 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -30,12 +30,10 @@ Following that we'll tell you about how you can test your changes locally and th It's important to work off the latest changes on the **development** branch. ```bash # With https - # Note the --recurse-submodules args, we use a submodule autosklearn/automl_common - # so it needs to be downloaded too - git clone --recurse-submodules https://github.com/your-username/auto-sklearn + git clone https://github.com/your-username/auto-sklearn # ... or with ssh - git clone --recurse-submodules git@github.com:your-username/auto-sklearn.git + git clone git@github.com:your-username/auto-sklearn.git # Navigate into the cloned repo cd auto-sklearn @@ -43,11 +41,6 @@ Following that we'll tell you about how you can test your changes locally and th # Create a new branch based off the development one git checkout -b my_new_branch development - # If you missed the --recurse-submodules arg during clone or need to install the - # submodule manually, then execute the following line: - # - # git submodule update --init --recursive - # ... Alternatively, if you would prefer a more manual method # Show all the available branches with a * beside your current one git branch @@ -57,11 +50,6 @@ Following that we'll tell you about how you can test your changes locally and th # Create a new branch based on the currently active branch git checkout -b my_new_branch - - # If you missed the --recurse-submodules arg during clone or need to install the - # submodule manually, then execute the following line: - # - # git submodule udate --init --recursive ``` The reason to create a new branch is two fold: @@ -93,7 +81,7 @@ Following that we'll tell you about how you can test your changes locally and th # If you're using shells other than bash you'll need to use pip install -e ".[test,examples,doc]" ``` - * If your only exposure to using pip is `pip install package_name` then this might be a bit confusing. + * If you're only exposure to using pip is `pip install package_name` then this might be a bit confusing. * If we type `pip install -e .` (notice the 'dot'), this tells `pip` to install a package located here, in this directory, `.`. The `-e` flag indicates that it should be editable, meaning you will not have to run `pip install .` every time you make a change and want to try it. * Finally the `[test,examples,doc]` tells `pip` that there's some extra optional dependencies that we want to install. @@ -347,9 +335,6 @@ Lastly, if the feature really is a game changer or you're very proud of it, cons cd auto-sklearn git checkout -b my_new_branch development - # Initialize autosklearn/automl_common submodule - git submodule update --init --recursive - # Create a virtual environment and activate it so there are no package # conflicts python -m venv my-virtual-env diff --git a/Dockerfile b/Dockerfile index e2a74c04f6..d9f73b2c83 100644 --- a/Dockerfile +++ b/Dockerfile @@ -32,7 +32,7 @@ ADD . /auto-sklearn/ # Upgrade pip then install dependencies RUN pip3 install --upgrade pip -RUN pip3 install pytest==4.6.* pep8 codecov pytest-cov flake8 openml +RUN pip3 install pytest==4.6.* pep8 codecov pytest-cov flake8 flaky openml RUN cat /auto-sklearn/requirements.txt | xargs -n 1 -L 1 pip3 install RUN pip3 install jupyter diff --git a/MANIFEST.in b/MANIFEST.in index dffd0c7283..e76cdbb0ea 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,18 +1,9 @@ -include LICENSE.txt -include requirements.txt +recursive-include autosklearn/metalearning/files *.arff +recursive-include autosklearn/metalearning/files *.csv +recursive-include autosklearn/metalearning/files *.txt include autosklearn/util/logging.yaml +include requirements.txt include autosklearn/requirements.txt -include autosklearn/py.typed - -# Meta-data -recursive-include autosklearn/metalearning/files *.arff *.csv *.txt -recursive-include autosklearn/experimental *.json - -# Remove tests from automl_common -prune autosklearn/automl_common/test -exclude autosklearn/automl_common/setup.py - -# Include automl_common LICENSE and README -include autosklearn/automl_common/LICENSE -include autosklearn/automl_common/README.md - +recursive-include autosklearn/experimental/ *.json +include autosklearn/experimental/askl2_training_data.json +include LICENSE.txt diff --git a/autosklearn/__init__.py b/autosklearn/__init__.py index f4769335d2..dae47a1089 100644 --- a/autosklearn/__init__.py +++ b/autosklearn/__init__.py @@ -20,8 +20,8 @@ sys.platform ) -if sys.version_info < (3, 7): +if sys.version_info < (3, 6): raise ValueError( 'Unsupported python version %s found. Auto-sklearn requires Python ' - '3.7 or higher.' % sys.version_info + '3.6 or higher.' % sys.version_info ) diff --git a/autosklearn/__version__.py b/autosklearn/__version__.py index f524395e3a..d33bd90441 100644 --- a/autosklearn/__version__.py +++ b/autosklearn/__version__.py @@ -1,4 +1,4 @@ """Version information.""" # The following line *must* be the last in the module, exactly as formatted: -__version__ = "0.14.4" +__version__ = "0.14.3" diff --git a/autosklearn/automl.py b/autosklearn/automl.py index 76640a5cbe..064a887a4a 100644 --- a/autosklearn/automl.py +++ b/autosklearn/automl.py @@ -1,6 +1,5 @@ # -*- encoding: utf-8 -*- import copy -import distro import io import json import platform @@ -38,8 +37,6 @@ from sklearn.metrics._classification import type_of_target from sklearn.dummy import DummyClassifier, DummyRegressor -from autosklearn.automl_common.common.utils.backend import Backend, create - from autosklearn.metrics import Scorer, default_metric_for_task from autosklearn.data.xy_data_manager import XYDataManager from autosklearn.data.validation import ( @@ -52,6 +49,7 @@ from autosklearn.evaluation.abstract_evaluator import _fit_and_suppress_warnings from autosklearn.evaluation.train_evaluator import TrainEvaluator, _fit_with_budget from autosklearn.metrics import calculate_metric +from autosklearn.util.backend import Backend, create from autosklearn.util.stopwatch import StopWatch from autosklearn.util.logging_ import ( setup_logger, @@ -173,8 +171,8 @@ def __init__(self, memory_limit=3072, metadata_directory=None, debug_mode=False, - include: Optional[Dict[str, List[str]]] = None, - exclude: Optional[Dict[str, List[str]]] = None, + include=None, + exclude=None, resampling_strategy='holdout-iterative-fit', resampling_strategy_arguments=None, n_jobs=None, @@ -282,8 +280,6 @@ def __init__(self, def _create_backend(self) -> Backend: return create( temporary_directory=self._temporary_directory, - output_directory=None, - prefix="auto-sklearn", delete_tmp_folder_after_terminate=self._delete_tmp_folder_after_terminate, ) @@ -694,10 +690,11 @@ def fit( self._logger.debug('Starting to print environment information') self._logger.debug(' Python version: %s', sys.version.split('\n')) try: - self._logger.debug(f'\tDistribution: {distro.id()}-{distro.version()}-{distro.name()}') + self._logger.debug(' Distribution: %s', platform.linux_distribution()) except AttributeError: + # platform.linux_distribution() was removed in Python3.8 + # We should move to the distro package as soon as it supports Windows and OSX pass - self._logger.debug(' System: %s', platform.system()) self._logger.debug(' Machine: %s', platform.machine()) self._logger.debug(' Platform: %s', platform.platform()) @@ -1836,159 +1833,21 @@ def get_models_with_weights(self): return self.ensemble_.get_models_with_weights(self.models_) - def show_models(self) -> Dict[int, Any]: - """ Returns a dictionary containing dictionaries of ensemble models. - - Each model in the ensemble can be accessed by giving its ``model_id`` as key. - - A model dictionary contains the following: - - * ``"model_id"`` - The id given to a model by ``autosklearn``. - * ``"rank"`` - The rank of the model based on it's ``"cost"``. - * ``"cost"`` - The loss of the model on the validation set. - * ``"ensemble_weight"`` - The weight given to the model in the ensemble. - * ``"voting_model"`` - The ``cv_voting_ensemble`` model (for 'cv' resampling). - * ``"estimators"`` - List of models (dicts) in ``cv_voting_ensemble`` (for 'cv' resampling). - * ``"data_preprocessor"`` - The preprocessor used on the data. - * ``"balancing"`` - The balancing used on the data (for classification). - * ``"feature_preprocessor"`` - The preprocessor for features types. - * ``"classifier"`` or ``"regressor"`` - The autosklearn wrapped classifier or regressor. - * ``"sklearn_classifier"`` or ``"sklearn_regressor"`` - The sklearn classifier or regressor. - - **Example** - - .. code-block:: python - - import sklearn.datasets - import sklearn.metrics - import autosklearn.regression - - X, y = sklearn.datasets.load_diabetes(return_X_y=True) - - automl = autosklearn.regression.AutoSklearnRegressor( - time_left_for_this_task=120 - ) - automl.fit(X_train, y_train, dataset_name='diabetes') - - ensemble_dict = automl.show_models() - print(ensemble_dict) - - Output: - - .. code-block:: text - - { - 25: {'model_id': 25.0, - 'rank': 1, - 'cost': 0.43667876507897496, - 'ensemble_weight': 0.38, - 'data_preprocessor': , - 'feature_preprocessor': , - 'regressor': , - 'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654,...) - }, - 6: {'model_id': 6.0, - 'rank': 2, - 'cost': 0.4550418898836528, - 'ensemble_weight': 0.3, - 'data_preprocessor': , - 'feature_preprocessor': , - 'regressor': , - 'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788,...) - }... - } - - Returns - ------- - Dict(int, Any) : dictionary of length = number of models in the ensemble - A dictionary of models in the ensemble, where ``model_id`` is the key. + def show_models(self): + models_with_weights = self.get_models_with_weights() - """ + with io.StringIO() as sio: + sio.write("[") + for weight, model in models_with_weights: + sio.write("(%f, %s),\n" % (weight, model)) + sio.write("]") - ensemble_dict = {} - - def has_key(rv, key): - return rv.additional_info and key in rv.additional_info - - table_dict = {} - for rkey, rval in self.runhistory_.data.items(): - if has_key(rval, 'num_run'): - model_id = rval.additional_info['num_run'] - table_dict[model_id] = { - 'model_id': model_id, - 'cost': rval.cost - } - - # Checking if the dictionary is empty - if not table_dict: - raise RuntimeError('No model found. Try increasing \'time_left_for_this_task\'.') - - for i, weight in enumerate(self.ensemble_.weights_): - (_, model_id, _) = self.ensemble_.identifiers_[i] - table_dict[model_id]['ensemble_weight'] = weight - - table = pd.DataFrame.from_dict(table_dict, orient='index') - - # Checking which resampling strategy is chosen and selecting the appropriate models - is_cv = (self._resampling_strategy == "cv") - models = self.cv_models_ if is_cv else self.models_ - - rank = 1 # Initializing rank for the first model - for (_, model_id, _), model in models.items(): - model_dict = {} # Declaring model dictionary - - # Inserting model_id, rank, cost and ensemble weight - model_dict['model_id'] = table.loc[model_id]['model_id'].astype(int) - model_dict['rank'] = rank - model_dict['cost'] = table.loc[model_id]['cost'] - model_dict['ensemble_weight'] = table.loc[model_id]['ensemble_weight'] - rank += 1 # Incrementing rank by 1 for the next model - - # The steps in the models pipeline are as follows: - # 'data_preprocessor': DataPreprocessor, - # 'balancing': Balancing, - # 'feature_preprocessor': FeaturePreprocessorChoice, - # 'classifier'/'regressor': ClassifierChoice/RegressorChoice (autosklearn wrapped model) - - # For 'cv' (cross validation) strategy - if is_cv: - # Voting model created by cross validation - cv_voting_ensemble = model - model_dict['voting_model'] = cv_voting_ensemble - - # List of models, each trained on one cv fold - cv_models = [] - for cv_model in cv_voting_ensemble.estimators_: - estimator = dict(cv_model.steps) - - # Adding sklearn model to the model dictionary - model_type, autosklearn_wrapped_model = cv_model.steps[-1] - estimator[f'sklearn_{model_type}'] = autosklearn_wrapped_model.choice.estimator - cv_models.append(estimator) - model_dict['estimators'] = cv_models - - # For any other strategy - else: - steps = dict(model.steps) - model_dict.update(steps) + return sio.getvalue() - # Adding sklearn model to the model dictionary - model_type, autosklearn_wrapped_model = model.steps[-1] - model_dict[f'sklearn_{model_type}'] = autosklearn_wrapped_model.choice.estimator - - # Insterting model_dict in the ensemble dictionary - ensemble_dict[model_id] = model_dict - - return ensemble_dict - - def _create_search_space( - self, - tmp_dir, - backend, - datamanager, - include: Optional[Dict[str, List[str]]] = None, - exclude: Optional[Dict[str, List[str]]] = None, - ): + def _create_search_space(self, tmp_dir, backend, datamanager, + include=None, + exclude=None, + ): task_name = 'CreateConfigSpace' self._stopwatch.start_task(task_name) diff --git a/autosklearn/automl_common b/autosklearn/automl_common deleted file mode 160000 index 4c8ab915e0..0000000000 --- a/autosklearn/automl_common +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 4c8ab915e007745611b9b7266137497839aba701 diff --git a/autosklearn/ensemble_builder.py b/autosklearn/ensemble_builder.py index e337726b0e..53539dd293 100644 --- a/autosklearn/ensemble_builder.py +++ b/autosklearn/ensemble_builder.py @@ -24,12 +24,11 @@ from smac.runhistory.runhistory import RunInfo, RunValue from smac.tae.base import StatusType -from autosklearn.automl_common.common.utils.backend import Backend -from autosklearn.automl_common.common.ensemble_building.abstract_ensemble import AbstractEnsemble - +from autosklearn.util.backend import Backend from autosklearn.constants import BINARY_CLASSIFICATION from autosklearn.metrics import calculate_score, calculate_loss, Scorer from autosklearn.ensembles.ensemble_selection import EnsembleSelection +from autosklearn.ensembles.abstract_ensemble import AbstractEnsemble from autosklearn.util.logging_ import get_named_client_logger from autosklearn.util.parallel import preload_modules diff --git a/autosklearn/ensembles/singlebest_ensemble.py b/autosklearn/ensembles/singlebest_ensemble.py index e10eee978f..31a69ae904 100644 --- a/autosklearn/ensembles/singlebest_ensemble.py +++ b/autosklearn/ensembles/singlebest_ensemble.py @@ -5,10 +5,10 @@ from smac.runhistory.runhistory import RunHistory -from autosklearn.automl_common.common.utils.backend import Backend from autosklearn.ensembles.abstract_ensemble import AbstractEnsemble from autosklearn.metrics import Scorer from autosklearn.pipeline.base import BasePipeline +from autosklearn.util.backend import Backend class SingleBest(AbstractEnsemble): diff --git a/autosklearn/estimators.py b/autosklearn/estimators.py index 3eb2d7b8c5..87aa2be317 100644 --- a/autosklearn/estimators.py +++ b/autosklearn/estimators.py @@ -34,8 +34,8 @@ def __init__( max_models_on_disc=50, seed=1, memory_limit=3072, - include: Optional[Dict[str, List[str]]] = None, - exclude: Optional[Dict[str, List[str]]] = None, + include=None, + exclude=None, resampling_strategy='holdout', resampling_strategy_arguments=None, tmp_folder=None, @@ -76,7 +76,7 @@ def __init__( ensemble_size : int, optional (default=50) Number of models added to the ensemble built by *Ensemble selection from libraries of models*. Models are drawn with - replacement. If set to ``0`` no ensemble is fit. + replacement. ensemble_nbest : int, optional (default=50) Only consider the ``ensemble_nbest`` models when building an @@ -96,64 +96,21 @@ def __init__( memory_limit : int, optional (3072) Memory limit in MB for the machine learning algorithm. `auto-sklearn` will stop fitting the machine learning algorithm if - it tries to allocate more than ``memory_limit`` MB. - - **Important notes:** - - * If ``None`` is provided, no memory limit is set. - * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is - ``n_jobs x memory_limit``. - * The memory limit also applies to the ensemble creation process. - - include : Optional[Dict[str, List[str]]] = None - If None, all possible algorithms are used. - - Otherwise, specifies a step and the components that are included in search. - See ``/pipeline/components//*`` for available components. - - Incompatible with parameter ``exclude``. - - **Possible Steps**: - - * ``"data_preprocessor"`` - * ``"balancing"`` - * ``"feature_preprocessor"`` - * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier`` - * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor`` - - **Example**: - - .. code-block:: python - - include = { - 'classifier': ["random_forest"], - 'feature_preprocessor': ["no_preprocessing"] - } - - exclude : Optional[Dict[str, List[str]]] = None - If None, all possible algorithms are used. - - Otherwise, specifies a step and the components that are excluded from search. - See ``/pipeline/components//*`` for available components. - - Incompatible with parameter ``include``. - - **Possible Steps**: - - * ``"data_preprocessor"`` - * ``"balancing"`` - * ``"feature_preprocessor"`` - * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier`` - * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor`` - - **Example**: - - .. code-block:: python - - exclude = { - 'classifier': ["random_forest"], - 'feature_preprocessor': ["no_preprocessing"] - } + it tries to allocate more than `memory_limit` MB. + If None is provided, no memory limit is set. + In case of multi-processing, `memory_limit` will be per job. + This memory limit also applies to the ensemble creation process. + + include : dict, optional (None) + If None, all possible algorithms are used. Otherwise specifies + set of algorithms for each added component is used. Include and + exclude are incompatible if used together on the same component + + exclude : dict, optional (None) + If None, all possible algorithms are used. Otherwise specifies + set of algorithms for each added component is not used. + Incompatible with include. Include and exclude are incompatible + if used together on the same component resampling_strategy : string or object, optional ('holdout') how to to handle overfitting, might need 'resampling_strategy_arguments' @@ -188,10 +145,10 @@ def __init__( * 'cv-iterative-fit': {'folds': int} * 'partial-cv': {'folds': int, 'shuffle': bool} * BaseCrossValidator or _RepeatedSplits or BaseShuffleSplit object: all arguments - required by chosen class as specified in scikit-learn documentation. - If arguments are not provided, scikit-learn defaults are used. - If no defaults are available, an exception is raised. - Refer to the 'n_splits' argument as 'folds'. + required by chosen class as specified in scikit-learn documentation. + If arguments are not provided, scikit-learn defaults are used. + If no defaults are available, an exception is raised. + Refer to the 'n_splits' argument as 'folds'. tmp_folder : string, optional (None) folder to store configuration output and log files, if ``None`` @@ -203,15 +160,13 @@ def __init__( n_jobs : int, optional, experimental The number of jobs to run in parallel for ``fit()``. ``-1`` means - using all processors. - - **Important notes**: - - * By default, Auto-sklearn uses one core. - * Ensemble building is not affected by ``n_jobs`` but can be controlled by the number - of models in the ensemble. - * ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models) - * If ``dask_client`` is ``None``, a new dask client is created. + using all processors. By default, Auto-sklearn uses a single core + for fitting the machine learning model and a single core for fitting + an ensemble. Ensemble building is not affected by ``n_jobs`` but + can be controlled by the number of models in the ensemble. In + contrast to most scikit-learn models, ``n_jobs`` given in the + constructor is not applied to the ``predict()`` method. If + ``dask_client`` is None, a new dask client is created. dask_client : dask.distributed.Client, optional User-created dask client, can be used to start a dask cluster and then @@ -227,7 +182,7 @@ def __init__( * ``'y_optimization'`` : do not save the predictions for the optimization/validation set, which would later on be used to build an ensemble. - * ``model`` : do not save any model files + * ``'model'`` : do not save any model files smac_scenario_args : dict, optional (None) Additional arguments inserted into the scenario of SMAC. See the @@ -273,13 +228,13 @@ def __init__( Attributes ---------- - cv_results_ : dict of numpy (masked) ndarrays + cv_results\_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. Not all keys returned by scikit-learn are supported yet. - performance_over_time_ : pandas.core.frame.DataFrame + performance_over_time\_ : pandas.core.frame.DataFrame A ``DataFrame`` containing the models performance over time data. Can be used for plotting directly. Please refer to the example :ref:`Train and Test Inputs `. @@ -537,74 +492,13 @@ def score(self, X, y): return self.automl_.score(X, y) def show_models(self): - """ Returns a dictionary containing dictionaries of ensemble models. - - Each model in the ensemble can be accessed by giving its ``model_id`` as key. - - A model dictionary contains the following: - - * ``"model_id"`` - The id given to a model by ``autosklearn``. - * ``"rank"`` - The rank of the model based on it's ``"cost"``. - * ``"cost"`` - The loss of the model on the validation set. - * ``"ensemble_weight"`` - The weight given to the model in the ensemble. - * ``"voting_model"`` - The ``cv_voting_ensemble`` model (for 'cv' resampling). - * ``"estimators"`` - List of models (dicts) in ``cv_voting_ensemble`` (for 'cv' resampling). - * ``"data_preprocessor"`` - The preprocessor used on the data. - * ``"balancing"`` - The balancing used on the data (for classification). - * ``"feature_preprocessor"`` - The preprocessor for features types. - * ``"classifier"`` or ``"regressor"`` - The autosklearn wrapped classifier or regressor. - * ``"sklearn_classifier"`` or ``"sklearn_regressor"`` - The sklearn classifier or regressor. - - **Example** - - .. code-block:: python - - import sklearn.datasets - import sklearn.metrics - import autosklearn.regression - - X, y = sklearn.datasets.load_diabetes(return_X_y=True) - - automl = autosklearn.regression.AutoSklearnRegressor( - time_left_for_this_task=120 - ) - automl.fit(X_train, y_train, dataset_name='diabetes') - - ensemble_dict = automl.show_models() - print(ensemble_dict) - - Output: - - .. code-block:: text - - { - 25: {'model_id': 25.0, - 'rank': 1, - 'cost': 0.43667876507897496, - 'ensemble_weight': 0.38, - 'data_preprocessor': , - 'feature_preprocessor': , - 'regressor': , - 'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654,...) - }, - 6: {'model_id': 6.0, - 'rank': 2, - 'cost': 0.4550418898836528, - 'ensemble_weight': 0.3, - 'data_preprocessor': , - 'feature_preprocessor': , - 'regressor': , - 'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788,...) - }... - } + """Return a representation of the final ensemble found by auto-sklearn. Returns ------- - Dict(int, Any) : dictionary of length = number of models in the ensemble - A dictionary of models in the ensemble, where ``model_id`` is the key. + str """ - return self.automl_.show_models() def get_models_with_weights(self): @@ -665,7 +559,7 @@ def leaderboard( Gives an overview of all models trained during the search process along with various statistics about their training. - The available statistics are: + The availble statistics are: **Simple**: diff --git a/autosklearn/evaluation/__init__.py b/autosklearn/evaluation/__init__.py index 506cf51441..589535d085 100644 --- a/autosklearn/evaluation/__init__.py +++ b/autosklearn/evaluation/__init__.py @@ -19,15 +19,14 @@ from sklearn.model_selection._split import _RepeatedSplits, BaseShuffleSplit,\ BaseCrossValidator - -from autosklearn.automl_common.common.utils.backend import Backend - from autosklearn.metrics import Scorer + import autosklearn.evaluation.train_evaluator import autosklearn.evaluation.test_evaluator import autosklearn.evaluation.util import autosklearn.pipeline.components from autosklearn.evaluation.train_evaluator import TYPE_ADDITIONAL_INFO +from autosklearn.util.backend import Backend from autosklearn.util.logging_ import PickableLoggerAdapter, get_named_client_logger from autosklearn.util.parallel import preload_modules diff --git a/autosklearn/evaluation/abstract_evaluator.py b/autosklearn/evaluation/abstract_evaluator.py index 36d51d7e0d..2e398b00ae 100644 --- a/autosklearn/evaluation/abstract_evaluator.py +++ b/autosklearn/evaluation/abstract_evaluator.py @@ -14,8 +14,6 @@ from threadpoolctl import threadpool_limits -from autosklearn.automl_common.common.utils.backend import Backend - import autosklearn.pipeline.classification import autosklearn.pipeline.regression from autosklearn.pipeline.components.base import ThirdPartyComponents, _addons @@ -30,6 +28,7 @@ convert_multioutput_multiclass_to_multilabel ) from autosklearn.metrics import calculate_loss, Scorer +from autosklearn.util.backend import Backend from autosklearn.util.logging_ import PicklableClientLogger, get_named_client_logger from ConfigSpace import Configuration diff --git a/autosklearn/evaluation/test_evaluator.py b/autosklearn/evaluation/test_evaluator.py index 181ebce233..e83edb0682 100644 --- a/autosklearn/evaluation/test_evaluator.py +++ b/autosklearn/evaluation/test_evaluator.py @@ -8,14 +8,13 @@ from smac.tae import StatusType -from autosklearn.automl_common.common.utils.backend import Backend - from autosklearn.evaluation.abstract_evaluator import ( AbstractEvaluator, _fit_and_suppress_warnings, ) from autosklearn.pipeline.components.base import ThirdPartyComponents from autosklearn.metrics import calculate_loss, Scorer +from autosklearn.util.backend import Backend __all__ = [ diff --git a/autosklearn/evaluation/train_evaluator.py b/autosklearn/evaluation/train_evaluator.py index 558fdd3b67..51b433153d 100644 --- a/autosklearn/evaluation/train_evaluator.py +++ b/autosklearn/evaluation/train_evaluator.py @@ -17,8 +17,6 @@ StratifiedKFold, train_test_split, BaseCrossValidator, PredefinedSplit from sklearn.model_selection._split import _RepeatedSplits, BaseShuffleSplit -from autosklearn.automl_common.common.utils.backend import Backend - from autosklearn.evaluation.abstract_evaluator import ( AbstractEvaluator, TYPE_ADDITIONAL_INFO, @@ -39,6 +37,7 @@ from autosklearn.pipeline.base import PIPELINE_DATA_DTYPE from autosklearn.pipeline.components.base import IterativeComponent, ThirdPartyComponents from autosklearn.metrics import Scorer +from autosklearn.util.backend import Backend from autosklearn.util.logging_ import PicklableClientLogger diff --git a/autosklearn/experimental/askl2.py b/autosklearn/experimental/askl2.py index c01282fc47..7cbeebc9d0 100644 --- a/autosklearn/experimental/askl2.py +++ b/autosklearn/experimental/askl2.py @@ -218,7 +218,7 @@ def __init__( ensemble_size : int, optional (default=50) Number of models added to the ensemble built by *Ensemble selection from libraries of models*. Models are drawn with - replacement. If set to ``0`` no ensemble is fit. + replacement. ensemble_nbest : int, optional (default=50) Only consider the ``ensemble_nbest`` models when building an @@ -238,14 +238,10 @@ def __init__( memory_limit : int, optional (3072) Memory limit in MB for the machine learning algorithm. `auto-sklearn` will stop fitting the machine learning algorithm if - it tries to allocate more than ``memory_limit`` MB. - - **Important notes:** - - * If ``None`` is provided, no memory limit is set. - * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is - ``n_jobs x memory_limit``. - * The memory limit also applies to the ensemble creation process. + it tries to allocate more than `memory_limit` MB. + If None is provided, no memory limit is set. + In case of multi-processing, `memory_limit` will be per job. + This memory limit also applies to the ensemble creation process. tmp_folder : string, optional (None) folder to store configuration output and log files, if ``None`` @@ -257,15 +253,13 @@ def __init__( n_jobs : int, optional, experimental The number of jobs to run in parallel for ``fit()``. ``-1`` means - using all processors. - - **Important notes**: - - * By default, Auto-sklearn uses one core. - * Ensemble building is not affected by ``n_jobs`` but can be controlled by the number - of models in the ensemble. - * ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models) - * If ``dask_client`` is ``None``, a new dask client is created. + using all processors. By default, Auto-sklearn uses a single core + for fitting the machine learning model and a single core for fitting + an ensemble. Ensemble building is not affected by ``n_jobs`` but + can be controlled by the number of models in the ensemble. In + contrast to most scikit-learn models, ``n_jobs`` given in the + constructor is not applied to the ``predict()`` method. If + ``dask_client`` is None, a new dask client is created. dask_client : dask.distributed.Client, optional User-created dask client, can be used to start a dask cluster and then @@ -281,7 +275,7 @@ def __init__( * ``'y_optimization'`` : do not save the predictions for the optimization/validation set, which would later on be used to build an ensemble. - * ``model`` : do not save any model files + * ``'model'`` : do not save any model files smac_scenario_args : dict, optional (None) Additional arguments inserted into the scenario of SMAC. See the diff --git a/autosklearn/metalearning/files/mean_absolute_error_regression_dense/configurations.csv b/autosklearn/metalearning/files/mean_absolute_error_regression_dense/configurations.csv index 2b990c9d14..29e87b202f 100644 --- a/autosklearn/metalearning/files/mean_absolute_error_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/mean_absolute_error_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,no_encoding,no_coalescense,,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9749597494965978,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -12,no_encoding,minority_coalescer,0.43459780721179087,median,quantile_transformer,157,uniform,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,230,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8163213580890267e-13,3.018233262270109e-06,302.06769747934663,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -16,no_encoding,minority_coalescer,0.006961574439410704,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.849437092408927,,,0.0010072349709912712,0.2620770817035318,rbf,-1,False,0.043415935783161747,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -29,one_hot_encoding,minority_coalescer,0.019250695324004172,mean,robust_scaler,,,0.7578716752945609,0.2564985900301251,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9701517204674619,True,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.896118178311832,None,0.0,14,5,0.0,,,,,,,,,,,,feature_type -31,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3202682286326904,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9087389932117044,None,0.0,1,4,0.0,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -52,no_encoding,minority_coalescer,0.00037751305802594386,most_frequent,robust_scaler,,,0.8759400736837674,0.13221781341594682,fast_ica,,,,,,,,,,parallel,cube,697,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.029453991772614846,1.1450968194422473e-08,236.5906050407108,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -64,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.7430978207309135,0.25,extra_trees_preproc_for_regression,False,mae,None,0.7005907957964752,None,10,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.18534500736841375,None,0.0,20,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.03924332738035384,0.049768184173431644,least_squares,255,None,3,3,2,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -71,no_encoding,minority_coalescer,0.006510624355014198,most_frequent,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5230616735264457,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,19.854915227109338,,,0.007017972966409939,,linear,-1,True,9.038240422247689e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -74,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,117,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055180212426724,5.905140233631545e-07,1471.9250770888395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -91,one_hot_encoding,minority_coalescer,0.007279393188444156,most_frequent,robust_scaler,,,0.8268531657356266,0.12229287307944404,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9091333546205435,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,845.5038204708214,,,0.0029756081510812445,0.02954207864444914,rbf,-1,True,0.018999658720438555,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,one_hot_encoding,minority_coalescer,0.0003901993361129805,most_frequent,robust_scaler,,,0.7928201883580988,0.11402818686496194,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -120,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6057227489297443,None,0.0,3,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,minority_coalescer,0.010526018767545999,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.329157022258742e-08,0.02818475036529399,least_squares,255,None,48,2,6,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -147,one_hot_encoding,minority_coalescer,0.000182414424469489,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3397218611778608,fpr,f_regression,ard_regression,,,,,0.0005329886143170782,1.5995559806728806e-07,True,9.79851482791022e-09,4.820060564227363e-08,300,77402.07012138714,0.00027806908943004945,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,minority_coalescer,0.005641404972103142,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9753131471779288,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4961646758349313,fpr,f_regression,decision_tree,,,,,,,,,,,,,mae,1.1554556329468342,1.0,None,0.0,20,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,no_encoding,minority_coalescer,0.002826818926767823,most_frequent,quantile_transformer,940,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1835.6434398469457,0.5949110211986679,2,0.004129875971416024,7.459736749397281e-05,poly,-1,True,0.015429047182283249,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -205,no_encoding,minority_coalescer,0.09414191730578808,most_frequent,robust_scaler,,,0.7647308347062624,0.25612852139750486,feature_agglomeration,,,,,,,,,,,,,,cosine,average,25,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9807290179215522,None,0.0,1,16,0.0,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type -222,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1412,normal,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,103,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.14494079236825316,None,0.0,9,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -259,one_hot_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6818536175530396,None,0.0,11,11,0.0,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -269,no_encoding,minority_coalescer,0.11324357350799051,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,0.00014954470919422477,1.9262277034794773e-08,True,0.00022496118017024456,0.00042674670526235496,300,35523.21377524326,0.007079692553060248,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.018036515123556758,5.016705964050539e-07,61163.021227932,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,no_encoding,no_coalescense,,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9749597494965978,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +12,no_encoding,minority_coalescer,0.43459780721179087,median,quantile_transformer,157,uniform,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,230,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8163213580890267e-13,3.018233262270109e-06,302.06769747934663,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +16,no_encoding,minority_coalescer,0.006961574439410704,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.849437092408927,,3,0.0010072349709912712,0.2620770817035318,rbf,-1,False,0.043415935783161747,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +29,one_hot_encoding,minority_coalescer,0.019250695324004172,mean,robust_scaler,,,0.7578716752945609,0.2564985900301251,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9701517204674619,True,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.896118178311832,None,0.0,14,5,0.0,,,,,,,,,,,,feature_type +31,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3202682286326904,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9087389932117044,None,0.0,1,4,0.0,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +52,no_encoding,minority_coalescer,0.00037751305802594386,most_frequent,robust_scaler,,,0.8759400736837674,0.13221781341594682,fast_ica,,,,,,,,,,parallel,cube,697,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.029453991772614846,1.1450968194422473e-08,236.5906050407108,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +64,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.7430978207309135,0.25,extra_trees_preproc_for_regression,False,mae,None,0.7005907957964752,None,10,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.18534500736841375,None,0.0,20,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.03924332738035384,0.049768184173431644,least_squares,255,None,3,3,2,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +71,no_encoding,minority_coalescer,0.006510624355014198,most_frequent,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5230616735264457,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,19.854915227109338,,,0.007017972966409939,,linear,-1,True,9.038240422247689e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +74,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,117,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055180212426724,5.905140233631545e-07,1471.9250770888395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +91,one_hot_encoding,minority_coalescer,0.007279393188444156,most_frequent,robust_scaler,,,0.8268531657356266,0.12229287307944404,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9091333546205435,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,845.5038204708214,,5,0.0029756081510812445,0.02954207864444914,rbf,-1,True,0.018999658720438555,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,one_hot_encoding,minority_coalescer,0.0003901993361129805,most_frequent,robust_scaler,,,0.7928201883580988,0.11402818686496194,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +120,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6057227489297443,None,0.0,3,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,minority_coalescer,0.010526018767545999,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.329157022258742e-08,0.02818475036529399,least_squares,255,None,48,2,6,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +147,one_hot_encoding,minority_coalescer,0.000182414424469489,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3397218611778608,fpr,f_regression,ard_regression,,,,,0.0005329886143170782,1.5995559806728806e-07,True,9.79851482791022e-09,4.820060564227363e-08,300,77402.07012138714,0.00027806908943004945,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,minority_coalescer,0.005641404972103142,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9753131471779288,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,2,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4961646758349313,fpr,f_regression,decision_tree,,,,,,,,,,,,,mae,1.1554556329468342,1.0,None,0.0,20,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,4,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,no_encoding,minority_coalescer,0.002826818926767823,most_frequent,quantile_transformer,940,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1835.6434398469457,0.5949110211986679,2,0.004129875971416024,7.459736749397281e-05,poly,-1,True,0.015429047182283249,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,2,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +205,no_encoding,minority_coalescer,0.09414191730578808,most_frequent,robust_scaler,,,0.7647308347062624,0.25612852139750486,feature_agglomeration,,,,,,,,,,,,,,cosine,average,25,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9807290179215522,None,0.0,1,16,0.0,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type +222,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1412,normal,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,103,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.14494079236825316,None,0.0,9,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +259,one_hot_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6818536175530396,None,0.0,11,11,0.0,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +269,no_encoding,minority_coalescer,0.11324357350799051,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,0.00014954470919422477,1.9262277034794773e-08,True,0.00022496118017024456,0.00042674670526235496,300,35523.21377524326,0.007079692553060248,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.018036515123556758,5.016705964050539e-07,61163.021227932,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/mean_absolute_error_regression_sparse/configurations.csv b/autosklearn/metalearning/files/mean_absolute_error_regression_sparse/configurations.csv index 2b990c9d14..29e87b202f 100644 --- a/autosklearn/metalearning/files/mean_absolute_error_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/mean_absolute_error_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,no_encoding,no_coalescense,,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9749597494965978,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -12,no_encoding,minority_coalescer,0.43459780721179087,median,quantile_transformer,157,uniform,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,230,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8163213580890267e-13,3.018233262270109e-06,302.06769747934663,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -16,no_encoding,minority_coalescer,0.006961574439410704,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.849437092408927,,,0.0010072349709912712,0.2620770817035318,rbf,-1,False,0.043415935783161747,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -29,one_hot_encoding,minority_coalescer,0.019250695324004172,mean,robust_scaler,,,0.7578716752945609,0.2564985900301251,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9701517204674619,True,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.896118178311832,None,0.0,14,5,0.0,,,,,,,,,,,,feature_type -31,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3202682286326904,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9087389932117044,None,0.0,1,4,0.0,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -52,no_encoding,minority_coalescer,0.00037751305802594386,most_frequent,robust_scaler,,,0.8759400736837674,0.13221781341594682,fast_ica,,,,,,,,,,parallel,cube,697,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.029453991772614846,1.1450968194422473e-08,236.5906050407108,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -64,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.7430978207309135,0.25,extra_trees_preproc_for_regression,False,mae,None,0.7005907957964752,None,10,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.18534500736841375,None,0.0,20,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.03924332738035384,0.049768184173431644,least_squares,255,None,3,3,2,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -71,no_encoding,minority_coalescer,0.006510624355014198,most_frequent,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5230616735264457,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,19.854915227109338,,,0.007017972966409939,,linear,-1,True,9.038240422247689e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -74,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,117,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055180212426724,5.905140233631545e-07,1471.9250770888395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -91,one_hot_encoding,minority_coalescer,0.007279393188444156,most_frequent,robust_scaler,,,0.8268531657356266,0.12229287307944404,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9091333546205435,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,845.5038204708214,,,0.0029756081510812445,0.02954207864444914,rbf,-1,True,0.018999658720438555,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,one_hot_encoding,minority_coalescer,0.0003901993361129805,most_frequent,robust_scaler,,,0.7928201883580988,0.11402818686496194,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -120,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6057227489297443,None,0.0,3,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,minority_coalescer,0.010526018767545999,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.329157022258742e-08,0.02818475036529399,least_squares,255,None,48,2,6,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -147,one_hot_encoding,minority_coalescer,0.000182414424469489,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3397218611778608,fpr,f_regression,ard_regression,,,,,0.0005329886143170782,1.5995559806728806e-07,True,9.79851482791022e-09,4.820060564227363e-08,300,77402.07012138714,0.00027806908943004945,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,minority_coalescer,0.005641404972103142,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9753131471779288,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4961646758349313,fpr,f_regression,decision_tree,,,,,,,,,,,,,mae,1.1554556329468342,1.0,None,0.0,20,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,no_encoding,minority_coalescer,0.002826818926767823,most_frequent,quantile_transformer,940,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1835.6434398469457,0.5949110211986679,2,0.004129875971416024,7.459736749397281e-05,poly,-1,True,0.015429047182283249,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -205,no_encoding,minority_coalescer,0.09414191730578808,most_frequent,robust_scaler,,,0.7647308347062624,0.25612852139750486,feature_agglomeration,,,,,,,,,,,,,,cosine,average,25,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9807290179215522,None,0.0,1,16,0.0,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type -222,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1412,normal,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,103,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.14494079236825316,None,0.0,9,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -259,one_hot_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6818536175530396,None,0.0,11,11,0.0,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -269,no_encoding,minority_coalescer,0.11324357350799051,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,0.00014954470919422477,1.9262277034794773e-08,True,0.00022496118017024456,0.00042674670526235496,300,35523.21377524326,0.007079692553060248,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.018036515123556758,5.016705964050539e-07,61163.021227932,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,no_encoding,no_coalescense,,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9749597494965978,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +12,no_encoding,minority_coalescer,0.43459780721179087,median,quantile_transformer,157,uniform,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,230,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8163213580890267e-13,3.018233262270109e-06,302.06769747934663,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +16,no_encoding,minority_coalescer,0.006961574439410704,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.849437092408927,,3,0.0010072349709912712,0.2620770817035318,rbf,-1,False,0.043415935783161747,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +29,one_hot_encoding,minority_coalescer,0.019250695324004172,mean,robust_scaler,,,0.7578716752945609,0.2564985900301251,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9701517204674619,True,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.896118178311832,None,0.0,14,5,0.0,,,,,,,,,,,,feature_type +31,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3202682286326904,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9087389932117044,None,0.0,1,4,0.0,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +52,no_encoding,minority_coalescer,0.00037751305802594386,most_frequent,robust_scaler,,,0.8759400736837674,0.13221781341594682,fast_ica,,,,,,,,,,parallel,cube,697,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.029453991772614846,1.1450968194422473e-08,236.5906050407108,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +64,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.7430978207309135,0.25,extra_trees_preproc_for_regression,False,mae,None,0.7005907957964752,None,10,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.18534500736841375,None,0.0,20,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.03924332738035384,0.049768184173431644,least_squares,255,None,3,3,2,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +71,no_encoding,minority_coalescer,0.006510624355014198,most_frequent,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5230616735264457,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,19.854915227109338,,,0.007017972966409939,,linear,-1,True,9.038240422247689e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +74,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,117,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055180212426724,5.905140233631545e-07,1471.9250770888395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +91,one_hot_encoding,minority_coalescer,0.007279393188444156,most_frequent,robust_scaler,,,0.8268531657356266,0.12229287307944404,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9091333546205435,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,845.5038204708214,,5,0.0029756081510812445,0.02954207864444914,rbf,-1,True,0.018999658720438555,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,one_hot_encoding,minority_coalescer,0.0003901993361129805,most_frequent,robust_scaler,,,0.7928201883580988,0.11402818686496194,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +120,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6057227489297443,None,0.0,3,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,minority_coalescer,0.010526018767545999,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.329157022258742e-08,0.02818475036529399,least_squares,255,None,48,2,6,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +147,one_hot_encoding,minority_coalescer,0.000182414424469489,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3397218611778608,fpr,f_regression,ard_regression,,,,,0.0005329886143170782,1.5995559806728806e-07,True,9.79851482791022e-09,4.820060564227363e-08,300,77402.07012138714,0.00027806908943004945,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,minority_coalescer,0.005641404972103142,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9753131471779288,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,2,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4961646758349313,fpr,f_regression,decision_tree,,,,,,,,,,,,,mae,1.1554556329468342,1.0,None,0.0,20,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,4,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,no_encoding,minority_coalescer,0.002826818926767823,most_frequent,quantile_transformer,940,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1835.6434398469457,0.5949110211986679,2,0.004129875971416024,7.459736749397281e-05,poly,-1,True,0.015429047182283249,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,2,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +205,no_encoding,minority_coalescer,0.09414191730578808,most_frequent,robust_scaler,,,0.7647308347062624,0.25612852139750486,feature_agglomeration,,,,,,,,,,,,,,cosine,average,25,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9807290179215522,None,0.0,1,16,0.0,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type +222,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1412,normal,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,103,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.14494079236825316,None,0.0,9,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +259,one_hot_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6818536175530396,None,0.0,11,11,0.0,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +269,no_encoding,minority_coalescer,0.11324357350799051,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,0.00014954470919422477,1.9262277034794773e-08,True,0.00022496118017024456,0.00042674670526235496,300,35523.21377524326,0.007079692553060248,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.018036515123556758,5.016705964050539e-07,61163.021227932,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/mean_squared_error_regression_dense/configurations.csv b/autosklearn/metalearning/files/mean_squared_error_regression_dense/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/mean_squared_error_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/mean_squared_error_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/mean_squared_error_regression_sparse/configurations.csv b/autosklearn/metalearning/files/mean_squared_error_regression_sparse/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/mean_squared_error_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/mean_squared_error_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/mean_squared_log_error_regression_dense/configurations.csv b/autosklearn/metalearning/files/mean_squared_log_error_regression_dense/configurations.csv index 3e3ac77027..d1a42e8ce7 100644 --- a/autosklearn/metalearning/files/mean_squared_log_error_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/mean_squared_log_error_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -1,no_encoding,minority_coalescer,0.19528306404468637,mean,quantile_transformer,1012,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,19,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0036015747006128023,2.958116238190801e-10,1648.7454294729528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -4,no_encoding,minority_coalescer,0.054221315715325895,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,7.818770024985629e-06,auto,0.9,0.999,train,1e-08,1,0.0007351998566408443,32,124,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,none,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9005220528852804,None,18,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.4422002266493963e-06,auto,0.9,0.999,train,1e-08,3,0.00010147904733612964,32,102,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -24,no_encoding,no_coalescense,,mean,quantile_transformer,921,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18833155459762518,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.7244875831624983e-11,1.7692546384341245e-08,2136.489365016044,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -25,no_encoding,minority_coalescer,0.008685068966137644,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,9.509076564526025e-10,0.10000000000000002,least_squares,255,None,43,16,15,loss,1e-07,0.11989931650613757,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,one_hot_encoding,minority_coalescer,0.00011833657936902366,median,robust_scaler,,,0.9620122536055723,0.041640861521144046,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.840099182386703,mutual_info,,,,ard_regression,,,,,0.00010000597343918577,9.119287544292207e-06,True,3.857095107208989e-05,2.2152513731755446e-09,300,1149.097005419999,0.07291173569179792,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type -40,no_encoding,no_coalescense,,mean,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1204,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.027276717840410566,square,9,374,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.03327108471043405,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,100,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,1.0,None,0.0,3,4,0.0,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -69,no_encoding,minority_coalescer,0.005916160439507675,median,robust_scaler,,,0.7573862080172087,0.23248564130335703,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9576560462788346,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -71,one_hot_encoding,minority_coalescer,0.009257498949520307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.44961973382556947,,,0.09740809652741539,,linear,-1,False,0.0017432165166466219,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -74,no_encoding,minority_coalescer,0.0411371732037623,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03920815396184238,1.5339339840662385e-06,12835.896109095504,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -76,no_encoding,minority_coalescer,0.01776348615812144,mean,robust_scaler,,,0.7531696951574762,0.26584579918469997,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.740596891332215e-06,auto,0.9,0.999,valid,1e-08,2,0.004884964756762577,32,214,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.06321015319850315,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1748.6495214510217,0.6139955830104578,5,0.2904841027866532,0.03681269777162136,poly,-1,False,0.048525035127205005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,minority_coalescer,0.09829149530888974,median,robust_scaler,,,0.9428003410291076,0.21757879968576752,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00047704082924845395,0.00032653628819910504,True,1.1948865170434934e-05,1.3225878459315499e-08,300,8355.350995742332,0.05053571954916396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -88,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9456069656982452,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -91,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.0003158899599773715,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,253,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7401627697020776,None,0.0,3,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.002271318766767127,median,quantile_transformer,547,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8193894465766905,None,0.0,2,17,0.0,,,,,,,,,,,,feature_type -124,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1567,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,1.0,None,0.0,5,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -131,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -137,one_hot_encoding,minority_coalescer,0.17155533674405296,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04620436030152636,0.0002826448059048065,992.7876887853456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -154,no_encoding,minority_coalescer,0.008570597554507026,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9098871393070471,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -159,one_hot_encoding,minority_coalescer,0.008494856931473163,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00037081737393889196,0.0006267702361019145,13.752901559664084,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -162,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9833970457216187,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -163,one_hot_encoding,minority_coalescer,0.018112600861325767,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.08159282928354238,8.625307386344728e-08,65.48869509665326,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,median,robust_scaler,,,0.843129351775309,0.033590245583939284,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7024447901011698,None,0.0,2,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,no_encoding,minority_coalescer,0.2167319402461091,mean,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.45870554101260114,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.002933121397771544,False,0.009964658655519253,,True,0.14999999999999974,optimal,epsilon_insensitive,elasticnet,,3.708169053960741e-05,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00015485569335015024,5.177331116710886e-07,True,1.749057118338389e-07,3.0624484035937795e-09,300,12306.96029514458,2.0202229877767396e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -189,no_encoding,minority_coalescer,0.042447196977431316,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,32.125031211228716,f_regression,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0017749279098074491,1.0426968473759477e-05,4564.7519789609605,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7677833621565118,0.25759436171066835,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.026111542610815466,least_squares,255,None,229,36,13,loss,1e-07,0.13728453982467612,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -195,no_encoding,minority_coalescer,0.02451767690464501,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09732187826438828,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014777084048994575,2.286200540779987e-09,9302.444837996962,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -200,one_hot_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9663287705959869,None,0.0,3,10,0.0,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -213,one_hot_encoding,minority_coalescer,0.014339959628553693,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4.8547880184275584e-05,True,0.09563670720196799,0.014559866208729597,True,,invscaling,epsilon_insensitive,l1,0.13583279480857163,0.00012816751859526018,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -219,no_encoding,minority_coalescer,0.01943518864702716,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19219901458178226,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.13669968231796129,0.4353151247757148,least_squares,255,None,80,67,14,loss,1e-07,0.044680427745856566,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -227,no_encoding,minority_coalescer,0.04976647818875639,mean,robust_scaler,,,0.7496554606439986,0.21900339643120248,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9373461778146084,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -234,no_encoding,minority_coalescer,0.00104103393087551,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03987312851206322,0.00027703072510082584,1116.9802212627676,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,no_encoding,minority_coalescer,0.016767569924572498,mean,standardize,,,,,extra_trees_preproc_for_regression,True,mse,None,1.0,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01114234288871711,2.051184689945752e-07,16.033192975742793,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -243,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.17117168806134755,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014512997078108282,2.3840234103129553e-05,4588.288936194533,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -249,one_hot_encoding,minority_coalescer,0.002291266242901915,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9838295541249756,None,0.0,4,9,0.0,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.09382570527264746,most_frequent,robust_scaler,,,0.7371688778157178,0.2787239315402732,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,ard_regression,,,,,0.0004011707126241623,0.00043076459083384017,True,1.4497912759357727e-08,5.5191094555400335e-05,300,1906.0574184995257,4.362118572358691e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -261,one_hot_encoding,minority_coalescer,0.06060922445200678,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0008174368913886637,1.7875823585609458e-07,True,3.571262743428141e-07,4.14818291023703e-09,300,23257.23600441506,0.016014365114117364,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -267,no_encoding,no_coalescense,,median,none,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5978082797440822,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.737104302980724,-0.22262956416372015,,0.01762287049050619,,sigmoid,-1,True,0.0002849301132395629,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03958214337031283,5.078705377926443e-07,1766.8717059746273,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -275,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,67,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type -278,one_hot_encoding,minority_coalescer,0.09205870929132008,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,148,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.035013789031210156,square,8,126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,no_encoding,minority_coalescer,0.004113130505243843,most_frequent,none,,,,,extra_trees_preproc_for_regression,True,mae,None,0.8369649994277156,None,8,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04144129277528442,2.0039230791934377e-06,49341.759561854764,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +1,no_encoding,minority_coalescer,0.19528306404468637,mean,quantile_transformer,1012,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,19,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0036015747006128023,2.958116238190801e-10,1648.7454294729528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +4,no_encoding,minority_coalescer,0.054221315715325895,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,7.818770024985629e-06,auto,0.9,0.999,train,1e-08,1,0.0007351998566408443,32,124,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,none,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9005220528852804,None,18,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.4422002266493963e-06,auto,0.9,0.999,train,1e-08,3,0.00010147904733612964,32,102,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +24,no_encoding,no_coalescense,,mean,quantile_transformer,921,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18833155459762518,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.7244875831624983e-11,1.7692546384341245e-08,2136.489365016044,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +25,no_encoding,minority_coalescer,0.008685068966137644,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,9.509076564526025e-10,0.10000000000000002,least_squares,255,None,43,16,15,loss,1e-07,0.11989931650613757,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,one_hot_encoding,minority_coalescer,0.00011833657936902366,median,robust_scaler,,,0.9620122536055723,0.041640861521144046,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.840099182386703,mutual_info,,,,ard_regression,,,,,0.00010000597343918577,9.119287544292207e-06,True,3.857095107208989e-05,2.2152513731755446e-09,300,1149.097005419999,0.07291173569179792,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type +40,no_encoding,no_coalescense,,mean,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1204,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.027276717840410566,square,9,374,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,2,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.03327108471043405,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,100,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,1.0,None,0.0,3,4,0.0,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +69,no_encoding,minority_coalescer,0.005916160439507675,median,robust_scaler,,,0.7573862080172087,0.23248564130335703,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9576560462788346,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +71,one_hot_encoding,minority_coalescer,0.009257498949520307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.44961973382556947,,,0.09740809652741539,,linear,-1,False,0.0017432165166466219,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +74,no_encoding,minority_coalescer,0.0411371732037623,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03920815396184238,1.5339339840662385e-06,12835.896109095504,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +76,no_encoding,minority_coalescer,0.01776348615812144,mean,robust_scaler,,,0.7531696951574762,0.26584579918469997,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.740596891332215e-06,auto,0.9,0.999,valid,1e-08,2,0.004884964756762577,32,214,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.06321015319850315,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1748.6495214510217,0.6139955830104578,5,0.2904841027866532,0.03681269777162136,poly,-1,False,0.048525035127205005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,minority_coalescer,0.09829149530888974,median,robust_scaler,,,0.9428003410291076,0.21757879968576752,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00047704082924845395,0.00032653628819910504,True,1.1948865170434934e-05,1.3225878459315499e-08,300,8355.350995742332,0.05053571954916396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +88,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9456069656982452,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +91,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.0003158899599773715,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,253,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7401627697020776,None,0.0,3,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.002271318766767127,median,quantile_transformer,547,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8193894465766905,None,0.0,2,17,0.0,,,,,,,,,,,,feature_type +124,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1567,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,1.0,None,0.0,5,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +131,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +137,one_hot_encoding,minority_coalescer,0.17155533674405296,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04620436030152636,0.0002826448059048065,992.7876887853456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +154,no_encoding,minority_coalescer,0.008570597554507026,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9098871393070471,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +159,one_hot_encoding,minority_coalescer,0.008494856931473163,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00037081737393889196,0.0006267702361019145,13.752901559664084,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +162,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9833970457216187,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +163,one_hot_encoding,minority_coalescer,0.018112600861325767,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.08159282928354238,8.625307386344728e-08,65.48869509665326,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,median,robust_scaler,,,0.843129351775309,0.033590245583939284,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7024447901011698,None,0.0,2,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,no_encoding,minority_coalescer,0.2167319402461091,mean,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.45870554101260114,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.002933121397771544,False,0.009964658655519253,,True,0.14999999999999974,optimal,epsilon_insensitive,elasticnet,,3.708169053960741e-05,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00015485569335015024,5.177331116710886e-07,True,1.749057118338389e-07,3.0624484035937795e-09,300,12306.96029514458,2.0202229877767396e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +189,no_encoding,minority_coalescer,0.042447196977431316,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,32.125031211228716,f_regression,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0017749279098074491,1.0426968473759477e-05,4564.7519789609605,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7677833621565118,0.25759436171066835,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.026111542610815466,least_squares,255,None,229,36,13,loss,1e-07,0.13728453982467612,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +195,no_encoding,minority_coalescer,0.02451767690464501,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09732187826438828,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014777084048994575,2.286200540779987e-09,9302.444837996962,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +200,one_hot_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9663287705959869,None,0.0,3,10,0.0,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +213,one_hot_encoding,minority_coalescer,0.014339959628553693,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4.8547880184275584e-05,True,0.09563670720196799,0.014559866208729597,True,,invscaling,epsilon_insensitive,l1,0.13583279480857163,0.00012816751859526018,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +219,no_encoding,minority_coalescer,0.01943518864702716,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19219901458178226,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.13669968231796129,0.4353151247757148,least_squares,255,None,80,67,14,loss,1e-07,0.044680427745856566,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +227,no_encoding,minority_coalescer,0.04976647818875639,mean,robust_scaler,,,0.7496554606439986,0.21900339643120248,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9373461778146084,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +234,no_encoding,minority_coalescer,0.00104103393087551,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03987312851206322,0.00027703072510082584,1116.9802212627676,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,no_encoding,minority_coalescer,0.016767569924572498,mean,standardize,,,,,extra_trees_preproc_for_regression,True,mse,None,1.0,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01114234288871711,2.051184689945752e-07,16.033192975742793,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +243,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.17117168806134755,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014512997078108282,2.3840234103129553e-05,4588.288936194533,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +249,one_hot_encoding,minority_coalescer,0.002291266242901915,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9838295541249756,None,0.0,4,9,0.0,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.09382570527264746,most_frequent,robust_scaler,,,0.7371688778157178,0.2787239315402732,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,ard_regression,,,,,0.0004011707126241623,0.00043076459083384017,True,1.4497912759357727e-08,5.5191094555400335e-05,300,1906.0574184995257,4.362118572358691e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +261,one_hot_encoding,minority_coalescer,0.06060922445200678,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0008174368913886637,1.7875823585609458e-07,True,3.571262743428141e-07,4.14818291023703e-09,300,23257.23600441506,0.016014365114117364,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +267,no_encoding,no_coalescense,,median,none,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5978082797440822,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.737104302980724,-0.22262956416372015,5,0.01762287049050619,,sigmoid,-1,True,0.0002849301132395629,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03958214337031283,5.078705377926443e-07,1766.8717059746273,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +275,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,67,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type +278,one_hot_encoding,minority_coalescer,0.09205870929132008,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,148,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.035013789031210156,square,8,126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,no_encoding,minority_coalescer,0.004113130505243843,most_frequent,none,,,,,extra_trees_preproc_for_regression,True,mae,None,0.8369649994277156,None,8,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04144129277528442,2.0039230791934377e-06,49341.759561854764,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/mean_squared_log_error_regression_sparse/configurations.csv b/autosklearn/metalearning/files/mean_squared_log_error_regression_sparse/configurations.csv index 3e3ac77027..d1a42e8ce7 100644 --- a/autosklearn/metalearning/files/mean_squared_log_error_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/mean_squared_log_error_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -1,no_encoding,minority_coalescer,0.19528306404468637,mean,quantile_transformer,1012,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,19,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0036015747006128023,2.958116238190801e-10,1648.7454294729528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -4,no_encoding,minority_coalescer,0.054221315715325895,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,7.818770024985629e-06,auto,0.9,0.999,train,1e-08,1,0.0007351998566408443,32,124,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,none,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9005220528852804,None,18,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.4422002266493963e-06,auto,0.9,0.999,train,1e-08,3,0.00010147904733612964,32,102,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -24,no_encoding,no_coalescense,,mean,quantile_transformer,921,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18833155459762518,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.7244875831624983e-11,1.7692546384341245e-08,2136.489365016044,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -25,no_encoding,minority_coalescer,0.008685068966137644,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,9.509076564526025e-10,0.10000000000000002,least_squares,255,None,43,16,15,loss,1e-07,0.11989931650613757,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,one_hot_encoding,minority_coalescer,0.00011833657936902366,median,robust_scaler,,,0.9620122536055723,0.041640861521144046,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.840099182386703,mutual_info,,,,ard_regression,,,,,0.00010000597343918577,9.119287544292207e-06,True,3.857095107208989e-05,2.2152513731755446e-09,300,1149.097005419999,0.07291173569179792,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type -40,no_encoding,no_coalescense,,mean,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1204,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.027276717840410566,square,9,374,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.03327108471043405,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,100,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,1.0,None,0.0,3,4,0.0,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -69,no_encoding,minority_coalescer,0.005916160439507675,median,robust_scaler,,,0.7573862080172087,0.23248564130335703,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9576560462788346,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -71,one_hot_encoding,minority_coalescer,0.009257498949520307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.44961973382556947,,,0.09740809652741539,,linear,-1,False,0.0017432165166466219,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -74,no_encoding,minority_coalescer,0.0411371732037623,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03920815396184238,1.5339339840662385e-06,12835.896109095504,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -76,no_encoding,minority_coalescer,0.01776348615812144,mean,robust_scaler,,,0.7531696951574762,0.26584579918469997,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.740596891332215e-06,auto,0.9,0.999,valid,1e-08,2,0.004884964756762577,32,214,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.06321015319850315,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1748.6495214510217,0.6139955830104578,5,0.2904841027866532,0.03681269777162136,poly,-1,False,0.048525035127205005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,minority_coalescer,0.09829149530888974,median,robust_scaler,,,0.9428003410291076,0.21757879968576752,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00047704082924845395,0.00032653628819910504,True,1.1948865170434934e-05,1.3225878459315499e-08,300,8355.350995742332,0.05053571954916396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -88,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9456069656982452,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -91,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.0003158899599773715,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,253,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7401627697020776,None,0.0,3,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.002271318766767127,median,quantile_transformer,547,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8193894465766905,None,0.0,2,17,0.0,,,,,,,,,,,,feature_type -124,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1567,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,1.0,None,0.0,5,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -131,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -137,one_hot_encoding,minority_coalescer,0.17155533674405296,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04620436030152636,0.0002826448059048065,992.7876887853456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -154,no_encoding,minority_coalescer,0.008570597554507026,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9098871393070471,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -159,one_hot_encoding,minority_coalescer,0.008494856931473163,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00037081737393889196,0.0006267702361019145,13.752901559664084,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -162,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9833970457216187,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -163,one_hot_encoding,minority_coalescer,0.018112600861325767,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.08159282928354238,8.625307386344728e-08,65.48869509665326,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,median,robust_scaler,,,0.843129351775309,0.033590245583939284,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7024447901011698,None,0.0,2,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,no_encoding,minority_coalescer,0.2167319402461091,mean,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.45870554101260114,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.002933121397771544,False,0.009964658655519253,,True,0.14999999999999974,optimal,epsilon_insensitive,elasticnet,,3.708169053960741e-05,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00015485569335015024,5.177331116710886e-07,True,1.749057118338389e-07,3.0624484035937795e-09,300,12306.96029514458,2.0202229877767396e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -189,no_encoding,minority_coalescer,0.042447196977431316,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,32.125031211228716,f_regression,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0017749279098074491,1.0426968473759477e-05,4564.7519789609605,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7677833621565118,0.25759436171066835,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.026111542610815466,least_squares,255,None,229,36,13,loss,1e-07,0.13728453982467612,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -195,no_encoding,minority_coalescer,0.02451767690464501,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09732187826438828,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014777084048994575,2.286200540779987e-09,9302.444837996962,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -200,one_hot_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9663287705959869,None,0.0,3,10,0.0,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -213,one_hot_encoding,minority_coalescer,0.014339959628553693,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4.8547880184275584e-05,True,0.09563670720196799,0.014559866208729597,True,,invscaling,epsilon_insensitive,l1,0.13583279480857163,0.00012816751859526018,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -219,no_encoding,minority_coalescer,0.01943518864702716,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19219901458178226,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.13669968231796129,0.4353151247757148,least_squares,255,None,80,67,14,loss,1e-07,0.044680427745856566,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -227,no_encoding,minority_coalescer,0.04976647818875639,mean,robust_scaler,,,0.7496554606439986,0.21900339643120248,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9373461778146084,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -234,no_encoding,minority_coalescer,0.00104103393087551,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03987312851206322,0.00027703072510082584,1116.9802212627676,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,no_encoding,minority_coalescer,0.016767569924572498,mean,standardize,,,,,extra_trees_preproc_for_regression,True,mse,None,1.0,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01114234288871711,2.051184689945752e-07,16.033192975742793,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -243,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.17117168806134755,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014512997078108282,2.3840234103129553e-05,4588.288936194533,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -249,one_hot_encoding,minority_coalescer,0.002291266242901915,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9838295541249756,None,0.0,4,9,0.0,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.09382570527264746,most_frequent,robust_scaler,,,0.7371688778157178,0.2787239315402732,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,ard_regression,,,,,0.0004011707126241623,0.00043076459083384017,True,1.4497912759357727e-08,5.5191094555400335e-05,300,1906.0574184995257,4.362118572358691e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -261,one_hot_encoding,minority_coalescer,0.06060922445200678,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0008174368913886637,1.7875823585609458e-07,True,3.571262743428141e-07,4.14818291023703e-09,300,23257.23600441506,0.016014365114117364,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -267,no_encoding,no_coalescense,,median,none,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5978082797440822,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.737104302980724,-0.22262956416372015,,0.01762287049050619,,sigmoid,-1,True,0.0002849301132395629,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03958214337031283,5.078705377926443e-07,1766.8717059746273,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -275,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,67,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type -278,one_hot_encoding,minority_coalescer,0.09205870929132008,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,148,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.035013789031210156,square,8,126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,no_encoding,minority_coalescer,0.004113130505243843,most_frequent,none,,,,,extra_trees_preproc_for_regression,True,mae,None,0.8369649994277156,None,8,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04144129277528442,2.0039230791934377e-06,49341.759561854764,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +1,no_encoding,minority_coalescer,0.19528306404468637,mean,quantile_transformer,1012,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,19,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0036015747006128023,2.958116238190801e-10,1648.7454294729528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +4,no_encoding,minority_coalescer,0.054221315715325895,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,7.818770024985629e-06,auto,0.9,0.999,train,1e-08,1,0.0007351998566408443,32,124,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,none,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9005220528852804,None,18,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.4422002266493963e-06,auto,0.9,0.999,train,1e-08,3,0.00010147904733612964,32,102,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +24,no_encoding,no_coalescense,,mean,quantile_transformer,921,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18833155459762518,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.7244875831624983e-11,1.7692546384341245e-08,2136.489365016044,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +25,no_encoding,minority_coalescer,0.008685068966137644,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,9.509076564526025e-10,0.10000000000000002,least_squares,255,None,43,16,15,loss,1e-07,0.11989931650613757,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,one_hot_encoding,minority_coalescer,0.00011833657936902366,median,robust_scaler,,,0.9620122536055723,0.041640861521144046,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.840099182386703,mutual_info,,,,ard_regression,,,,,0.00010000597343918577,9.119287544292207e-06,True,3.857095107208989e-05,2.2152513731755446e-09,300,1149.097005419999,0.07291173569179792,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,no_encoding,minority_coalescer,0.16100794776610894,median,robust_scaler,,,0.7171413959739553,0.13004136466339758,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,170,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.35533840599344335,None,0.0,4,3,0.0,,,,,,,,,,,,feature_type +40,no_encoding,no_coalescense,,mean,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1204,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.027276717840410566,square,9,374,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,2,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.03327108471043405,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,100,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,1.0,None,0.0,3,4,0.0,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +69,no_encoding,minority_coalescer,0.005916160439507675,median,robust_scaler,,,0.7573862080172087,0.23248564130335703,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9576560462788346,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +71,one_hot_encoding,minority_coalescer,0.009257498949520307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.44961973382556947,,,0.09740809652741539,,linear,-1,False,0.0017432165166466219,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +74,no_encoding,minority_coalescer,0.0411371732037623,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03920815396184238,1.5339339840662385e-06,12835.896109095504,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +76,no_encoding,minority_coalescer,0.01776348615812144,mean,robust_scaler,,,0.7531696951574762,0.26584579918469997,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,1.740596891332215e-06,auto,0.9,0.999,valid,1e-08,2,0.004884964756762577,32,214,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.06321015319850315,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1748.6495214510217,0.6139955830104578,5,0.2904841027866532,0.03681269777162136,poly,-1,False,0.048525035127205005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,minority_coalescer,0.09829149530888974,median,robust_scaler,,,0.9428003410291076,0.21757879968576752,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00047704082924845395,0.00032653628819910504,True,1.1948865170434934e-05,1.3225878459315499e-08,300,8355.350995742332,0.05053571954916396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +88,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9456069656982452,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +91,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +100,one_hot_encoding,minority_coalescer,0.0004074198580703139,mean,robust_scaler,,,0.9330606970563508,0.2761356138672697,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.028345285546561846,linear,10,174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.0003158899599773715,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,253,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7401627697020776,None,0.0,3,14,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.002271318766767127,median,quantile_transformer,547,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8193894465766905,None,0.0,2,17,0.0,,,,,,,,,,,,feature_type +124,no_encoding,no_coalescense,,most_frequent,quantile_transformer,1567,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,1.0,None,0.0,5,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +131,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +137,one_hot_encoding,minority_coalescer,0.17155533674405296,most_frequent,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04620436030152636,0.0002826448059048065,992.7876887853456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,robust_scaler,,,0.7889051141669929,0.2253427527717258,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3527536326193086,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.8877409763106398,None,0.0,10,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +154,no_encoding,minority_coalescer,0.008570597554507026,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9098871393070471,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +159,one_hot_encoding,minority_coalescer,0.008494856931473163,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00037081737393889196,0.0006267702361019145,13.752901559664084,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +162,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9833970457216187,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +163,one_hot_encoding,minority_coalescer,0.018112600861325767,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.08159282928354238,8.625307386344728e-08,65.48869509665326,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,median,robust_scaler,,,0.843129351775309,0.033590245583939284,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7024447901011698,None,0.0,2,15,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,no_encoding,minority_coalescer,0.2167319402461091,mean,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.45870554101260114,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.002933121397771544,False,0.009964658655519253,,True,0.14999999999999974,optimal,epsilon_insensitive,elasticnet,,3.708169053960741e-05,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,ard_regression,,,,,0.00015485569335015024,5.177331116710886e-07,True,1.749057118338389e-07,3.0624484035937795e-09,300,12306.96029514458,2.0202229877767396e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +189,no_encoding,minority_coalescer,0.042447196977431316,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,32.125031211228716,f_regression,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0017749279098074491,1.0426968473759477e-05,4564.7519789609605,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7677833621565118,0.25759436171066835,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.026111542610815466,least_squares,255,None,229,36,13,loss,1e-07,0.13728453982467612,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +195,no_encoding,minority_coalescer,0.02451767690464501,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09732187826438828,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014777084048994575,2.286200540779987e-09,9302.444837996962,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +200,one_hot_encoding,no_coalescense,,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9663287705959869,None,0.0,3,10,0.0,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.0026150904111835473,mean,normalize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5410109609735668,True,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,friedman_mse,1.240365240027156,1.0,None,0.0,19,11,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +213,one_hot_encoding,minority_coalescer,0.014339959628553693,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4.8547880184275584e-05,True,0.09563670720196799,0.014559866208729597,True,,invscaling,epsilon_insensitive,l1,0.13583279480857163,0.00012816751859526018,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +219,no_encoding,minority_coalescer,0.01943518864702716,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19219901458178226,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.13669968231796129,0.4353151247757148,least_squares,255,None,80,67,14,loss,1e-07,0.044680427745856566,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +227,no_encoding,minority_coalescer,0.04976647818875639,mean,robust_scaler,,,0.7496554606439986,0.21900339643120248,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9373461778146084,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +234,no_encoding,minority_coalescer,0.00104103393087551,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03987312851206322,0.00027703072510082584,1116.9802212627676,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,no_encoding,minority_coalescer,0.016767569924572498,mean,standardize,,,,,extra_trees_preproc_for_regression,True,mse,None,1.0,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01114234288871711,2.051184689945752e-07,16.033192975742793,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +243,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.17117168806134755,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.014512997078108282,2.3840234103129553e-05,4588.288936194533,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +249,one_hot_encoding,minority_coalescer,0.002291266242901915,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9838295541249756,None,0.0,4,9,0.0,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.09382570527264746,most_frequent,robust_scaler,,,0.7371688778157178,0.2787239315402732,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,ard_regression,,,,,0.0004011707126241623,0.00043076459083384017,True,1.4497912759357727e-08,5.5191094555400335e-05,300,1906.0574184995257,4.362118572358691e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +261,one_hot_encoding,minority_coalescer,0.06060922445200678,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0008174368913886637,1.7875823585609458e-07,True,3.571262743428141e-07,4.14818291023703e-09,300,23257.23600441506,0.016014365114117364,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +267,no_encoding,no_coalescense,,median,none,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5978082797440822,True,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.737104302980724,-0.22262956416372015,5,0.01762287049050619,,sigmoid,-1,True,0.0002849301132395629,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03958214337031283,5.078705377926443e-07,1766.8717059746273,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +275,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,67,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type +278,one_hot_encoding,minority_coalescer,0.09205870929132008,most_frequent,normalize,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,148,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.035013789031210156,square,8,126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,no_encoding,minority_coalescer,0.004113130505243843,most_frequent,none,,,,,extra_trees_preproc_for_regression,True,mae,None,0.8369649994277156,None,8,19,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04144129277528442,2.0039230791934377e-06,49341.759561854764,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/median_absolute_error_regression_dense/configurations.csv b/autosklearn/metalearning/files/median_absolute_error_regression_dense/configurations.csv index cd89a4e34d..e0d0e1b96b 100644 --- a/autosklearn/metalearning/files/median_absolute_error_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/median_absolute_error_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -5,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1640,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,6,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -11,no_encoding,minority_coalescer,0.007097225871050227,median,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -18,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,6057.379756266077,,,0.0011325324000394828,0.05291717770551696,rbf,-1,False,0.006686881523567499,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,one_hot_encoding,minority_coalescer,0.050324425846607804,median,robust_scaler,,,0.8007277620832998,0.21762816739338928,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,47,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.8902072637076673,None,0.0,1,10,0.0,,,,,,,,,,,,feature_type -31,no_encoding,no_coalescense,,median,robust_scaler,,,0.8741033902488873,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0661055106742061,fwe,f_regression,ard_regression,,,,,0.00020075921434400403,5.67006828407246e-07,True,9.931380185031806e-09,1.1590381260870653e-10,300,98492.15951133538,0.0006697275349092505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -36,no_encoding,minority_coalescer,0.32955230566093613,mean,robust_scaler,,,0.7272718855134701,0.08801586389902688,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,adaboost,1.1471062217551702,linear,8,167,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,one_hot_encoding,minority_coalescer,0.060839696469393995,mean,robust_scaler,,,0.711042225237951,0.09731632673930204,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,158,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.30197308921090893,None,0.0,15,8,0.0,,,,,,,,,,,,feature_type -40,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -53,one_hot_encoding,minority_coalescer,0.006445714372024774,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023884335811188567,1.4170355084228403e-06,290.62967682941456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -64,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,nystroem_sampler,,,,,,,,,,,,,,,,,,,,,,,,,,,,cosine,720,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8275914377838947e-06,False,5.4187840539648986e-05,0.012800259746180712,True,,invscaling,epsilon_insensitive,l2,0.413658635698922,0.001985117774888825,feature_type -68,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,quantile_transformer,353,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,1.195117915830476,square,7,446,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.048677279020287845,mean,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9330163695321677,False,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,48,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -73,no_encoding,no_coalescense,,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.050094191586811006,0.0003548828620495203,4.892652257294903,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,one_hot_encoding,minority_coalescer,0.013690195921333696,mean,quantile_transformer,927,uniform,,,fast_ica,,,,,,,,,,parallel,logcosh,686,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.3456663826588904,None,0.0,1,3,0.0,,,,,,,,,,,,feature_type -79,one_hot_encoding,minority_coalescer,0.013559976666217482,mean,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,81,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7074.759184676747,,,0.012970405947021068,0.017862025016886447,rbf,-1,False,0.0033700520159237702,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -85,no_encoding,minority_coalescer,0.043611723722987744,median,robust_scaler,,,0.8153794856777101,0.2542106848357464,fast_ica,,,,,,,,,,parallel,logcosh,45,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7574904554752734,None,0.0,2,4,0.0,,,,,,,,,,,,feature_type -90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -91,no_encoding,minority_coalescer,0.1781448810684882,median,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1750,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.34034793262861907,fwe,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -99,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9742867952016132,0.05179873386092966,extra_trees_preproc_for_regression,True,mse,None,0.9526743283178011,None,10,13,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7549749249776565,1.0,None,0.0,18,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,221.71686867531432,,,0.0011345895753789173,0.03605472173139597,rbf,-1,True,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -116,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -120,no_encoding,no_coalescense,,most_frequent,quantile_transformer,698,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,80.29508560042179,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7518614704756971,None,0.0,6,8,0.0,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -125,no_encoding,minority_coalescer,0.026860406930453065,mean,quantile_transformer,1603,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,adaboost,1.4602808978340507,linear,8,350,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.8011683337278442,0.27942314040423333,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,4.46362791740829e-05,0.02648994712354678,least_squares,255,None,157,1,3,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -142,one_hot_encoding,minority_coalescer,0.010000000000000004,median,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,412.2233201783493,,,0.0011345895753789173,0.09283610863148048,rbf,-1,False,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5334180754572447,False,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.8479567336155207,None,0.0,8,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,minority_coalescer,0.010000000000000004,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0007449695943118128,4.4022561284356343e-07,True,9.649841844227597e-07,3.5339262480338594e-06,300,1747.977219451044,0.001975027709452003,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9722422278717789,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -151,one_hot_encoding,no_coalescense,,median,quantile_transformer,1112,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1878422016198133,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -157,one_hot_encoding,minority_coalescer,0.1281015395729456,mean,robust_scaler,,,0.8161790810768598,0.194653955004446,feature_agglomeration,,,,,,,,,,,,,,cosine,average,232,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,5.740230445424651e-08,64.73594928324005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,1.3924788244078783,1.0,None,0.0,17,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,one_hot_encoding,minority_coalescer,0.00011498059478619926,median,minmax,,,,,extra_trees_preproc_for_regression,True,mae,None,0.959288288500526,None,16,17,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.4170386760209059,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,one_hot_encoding,minority_coalescer,0.060340760284342335,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00019882600974585908,2.3346820047921983e-05,72722.93613112147,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -189,one_hot_encoding,minority_coalescer,0.010687735018317065,most_frequent,quantile_transformer,715,normal,,,extra_trees_preproc_for_regression,False,mse,None,1.0,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -193,one_hot_encoding,minority_coalescer,0.02455131058287564,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.006125673891992339,0.05755219835553661,least_squares,255,None,3,105,1,loss,1e-07,0.34204169177546356,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -198,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.75372906924827,0.25601670030188695,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1.142411064078065e-10,0.07991394289005148,least_squares,255,None,20,20,10,loss,1e-07,0.09462663894906431,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -205,one_hot_encoding,minority_coalescer,0.01700675326616134,median,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,average,151,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mse,1.0282554380863351,1.0,None,0.0,19,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.10380250296711345,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,313.80394795972063,,,0.003099223059277561,0.017317093115152473,rbf,-1,True,0.024277944281241755,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -217,no_encoding,minority_coalescer,0.3075379022640153,median,robust_scaler,,,0.75,0.2227403297034476,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.5867647620951765,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type -220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type -222,no_encoding,minority_coalescer,0.002591037601166213,mean,none,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,30.46212550428878,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.6717483424890341,None,0.0,20,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.7561109696348165,0.25,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9940190674957999,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,no_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051722240295206036,3.6874673577742775e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.00812390310244969,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03429300412839323,1.1283208177742579e-06,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -244,one_hot_encoding,minority_coalescer,0.009333160306231441,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.030976606236786153,1.1454014935657008e-06,26.06908483490808,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -250,no_encoding,minority_coalescer,0.0013706790419589269,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,36.16485710707785,mutual_info,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.752819740456617,None,0.0,19,15,0.0,,,,,,,,,,,,feature_type -253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -259,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.23965115028414283,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,460.76474217462135,,,0.005339969606710064,0.18388140886633259,rbf,-1,True,7.327296664444106e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -269,no_encoding,minority_coalescer,0.013501988241596803,mean,robust_scaler,,,0.779736398051298,0.25,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14290213312055283,fpr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19160000577407318,False,0.08447160725051764,True,1,squared_epsilon_insensitive,0.00013920807185728581,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -272,no_encoding,minority_coalescer,0.33019614194741737,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.042751149363097055,8.347428498783927e-08,57.94899150758775,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,robust_scaler,,,0.9591089096488032,0.014057471925138065,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9820315057084981,None,0.0,5,20,0.0,,,,,,,,,,,,feature_type -276,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.99052561287723,0.21219427729271156,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,2,None,1,15,1.0,97,,,,,,decision_tree,,,,,,,,,,,,,mae,0.45721730917643494,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +5,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1640,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,6,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +11,no_encoding,minority_coalescer,0.007097225871050227,median,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +18,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,6057.379756266077,,4,0.0011325324000394828,0.05291717770551696,rbf,-1,False,0.006686881523567499,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,one_hot_encoding,minority_coalescer,0.050324425846607804,median,robust_scaler,,,0.8007277620832998,0.21762816739338928,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,47,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.8902072637076673,None,0.0,1,10,0.0,,,,,,,,,,,,feature_type +31,no_encoding,no_coalescense,,median,robust_scaler,,,0.8741033902488873,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0661055106742061,fwe,f_regression,ard_regression,,,,,0.00020075921434400403,5.67006828407246e-07,True,9.931380185031806e-09,1.1590381260870653e-10,300,98492.15951133538,0.0006697275349092505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +36,no_encoding,minority_coalescer,0.32955230566093613,mean,robust_scaler,,,0.7272718855134701,0.08801586389902688,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,adaboost,1.1471062217551702,linear,8,167,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,one_hot_encoding,minority_coalescer,0.060839696469393995,mean,robust_scaler,,,0.711042225237951,0.09731632673930204,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,158,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.30197308921090893,None,0.0,15,8,0.0,,,,,,,,,,,,feature_type +40,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,2,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +53,one_hot_encoding,minority_coalescer,0.006445714372024774,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023884335811188567,1.4170355084228403e-06,290.62967682941456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +64,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,nystroem_sampler,,,,,,,,,,,,,,,,,,,,,,,,,,,,cosine,720,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8275914377838947e-06,False,5.4187840539648986e-05,0.012800259746180712,True,,invscaling,epsilon_insensitive,l2,0.413658635698922,0.001985117774888825,feature_type +68,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,quantile_transformer,353,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,1.195117915830476,square,7,446,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.048677279020287845,mean,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9330163695321677,False,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,48,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +73,no_encoding,no_coalescense,,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.050094191586811006,0.0003548828620495203,4.892652257294903,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,one_hot_encoding,minority_coalescer,0.013690195921333696,mean,quantile_transformer,927,uniform,,,fast_ica,,,,,,,,,,parallel,logcosh,686,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.3456663826588904,None,0.0,1,3,0.0,,,,,,,,,,,,feature_type +79,one_hot_encoding,minority_coalescer,0.013559976666217482,mean,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,81,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7074.759184676747,,4,0.012970405947021068,0.017862025016886447,rbf,-1,False,0.0033700520159237702,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +85,no_encoding,minority_coalescer,0.043611723722987744,median,robust_scaler,,,0.8153794856777101,0.2542106848357464,fast_ica,,,,,,,,,,parallel,logcosh,45,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7574904554752734,None,0.0,2,4,0.0,,,,,,,,,,,,feature_type +90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +91,no_encoding,minority_coalescer,0.1781448810684882,median,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1750,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.34034793262861907,fwe,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +99,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9742867952016132,0.05179873386092966,extra_trees_preproc_for_regression,True,mse,None,0.9526743283178011,None,10,13,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7549749249776565,1.0,None,0.0,18,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,221.71686867531432,,2,0.0011345895753789173,0.03605472173139597,rbf,-1,True,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +116,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +120,no_encoding,no_coalescense,,most_frequent,quantile_transformer,698,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,80.29508560042179,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7518614704756971,None,0.0,6,8,0.0,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +125,no_encoding,minority_coalescer,0.026860406930453065,mean,quantile_transformer,1603,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,adaboost,1.4602808978340507,linear,8,350,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.8011683337278442,0.27942314040423333,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,4.46362791740829e-05,0.02648994712354678,least_squares,255,None,157,1,3,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +142,one_hot_encoding,minority_coalescer,0.010000000000000004,median,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,412.2233201783493,,2,0.0011345895753789173,0.09283610863148048,rbf,-1,False,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5334180754572447,False,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.8479567336155207,None,0.0,8,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,minority_coalescer,0.010000000000000004,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0007449695943118128,4.4022561284356343e-07,True,9.649841844227597e-07,3.5339262480338594e-06,300,1747.977219451044,0.001975027709452003,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9722422278717789,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +151,one_hot_encoding,no_coalescense,,median,quantile_transformer,1112,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1878422016198133,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +157,one_hot_encoding,minority_coalescer,0.1281015395729456,mean,robust_scaler,,,0.8161790810768598,0.194653955004446,feature_agglomeration,,,,,,,,,,,,,,cosine,average,232,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,2,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,5.740230445424651e-08,64.73594928324005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,1.3924788244078783,1.0,None,0.0,17,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,4,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,one_hot_encoding,minority_coalescer,0.00011498059478619926,median,minmax,,,,,extra_trees_preproc_for_regression,True,mae,None,0.959288288500526,None,16,17,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.4170386760209059,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,2,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,one_hot_encoding,minority_coalescer,0.060340760284342335,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00019882600974585908,2.3346820047921983e-05,72722.93613112147,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +189,one_hot_encoding,minority_coalescer,0.010687735018317065,most_frequent,quantile_transformer,715,normal,,,extra_trees_preproc_for_regression,False,mse,None,1.0,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +193,one_hot_encoding,minority_coalescer,0.02455131058287564,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.006125673891992339,0.05755219835553661,least_squares,255,None,3,105,1,loss,1e-07,0.34204169177546356,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +198,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.75372906924827,0.25601670030188695,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1.142411064078065e-10,0.07991394289005148,least_squares,255,None,20,20,10,loss,1e-07,0.09462663894906431,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +205,one_hot_encoding,minority_coalescer,0.01700675326616134,median,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,average,151,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mse,1.0282554380863351,1.0,None,0.0,19,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.10380250296711345,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,313.80394795972063,,2,0.003099223059277561,0.017317093115152473,rbf,-1,True,0.024277944281241755,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +217,no_encoding,minority_coalescer,0.3075379022640153,median,robust_scaler,,,0.75,0.2227403297034476,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.5867647620951765,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type +220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type +222,no_encoding,minority_coalescer,0.002591037601166213,mean,none,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,30.46212550428878,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.6717483424890341,None,0.0,20,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.7561109696348165,0.25,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9940190674957999,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,no_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051722240295206036,3.6874673577742775e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.00812390310244969,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03429300412839323,1.1283208177742579e-06,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +244,one_hot_encoding,minority_coalescer,0.009333160306231441,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.030976606236786153,1.1454014935657008e-06,26.06908483490808,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +250,no_encoding,minority_coalescer,0.0013706790419589269,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,36.16485710707785,mutual_info,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.752819740456617,None,0.0,19,15,0.0,,,,,,,,,,,,feature_type +253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +259,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.23965115028414283,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,460.76474217462135,,4,0.005339969606710064,0.18388140886633259,rbf,-1,True,7.327296664444106e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +269,no_encoding,minority_coalescer,0.013501988241596803,mean,robust_scaler,,,0.779736398051298,0.25,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14290213312055283,fpr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19160000577407318,False,0.08447160725051764,True,1,squared_epsilon_insensitive,0.00013920807185728581,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +272,no_encoding,minority_coalescer,0.33019614194741737,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.042751149363097055,8.347428498783927e-08,57.94899150758775,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,robust_scaler,,,0.9591089096488032,0.014057471925138065,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9820315057084981,None,0.0,5,20,0.0,,,,,,,,,,,,feature_type +276,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.99052561287723,0.21219427729271156,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,2,None,1,15,1.0,97,,,,,,decision_tree,,,,,,,,,,,,,mae,0.45721730917643494,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/median_absolute_error_regression_sparse/configurations.csv b/autosklearn/metalearning/files/median_absolute_error_regression_sparse/configurations.csv index cd89a4e34d..e0d0e1b96b 100644 --- a/autosklearn/metalearning/files/median_absolute_error_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/median_absolute_error_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -5,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1640,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,6,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -11,no_encoding,minority_coalescer,0.007097225871050227,median,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -18,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,6057.379756266077,,,0.0011325324000394828,0.05291717770551696,rbf,-1,False,0.006686881523567499,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,one_hot_encoding,minority_coalescer,0.050324425846607804,median,robust_scaler,,,0.8007277620832998,0.21762816739338928,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,47,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.8902072637076673,None,0.0,1,10,0.0,,,,,,,,,,,,feature_type -31,no_encoding,no_coalescense,,median,robust_scaler,,,0.8741033902488873,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0661055106742061,fwe,f_regression,ard_regression,,,,,0.00020075921434400403,5.67006828407246e-07,True,9.931380185031806e-09,1.1590381260870653e-10,300,98492.15951133538,0.0006697275349092505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -36,no_encoding,minority_coalescer,0.32955230566093613,mean,robust_scaler,,,0.7272718855134701,0.08801586389902688,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,adaboost,1.1471062217551702,linear,8,167,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -38,one_hot_encoding,minority_coalescer,0.060839696469393995,mean,robust_scaler,,,0.711042225237951,0.09731632673930204,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,158,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.30197308921090893,None,0.0,15,8,0.0,,,,,,,,,,,,feature_type -40,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -53,one_hot_encoding,minority_coalescer,0.006445714372024774,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023884335811188567,1.4170355084228403e-06,290.62967682941456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -64,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,nystroem_sampler,,,,,,,,,,,,,,,,,,,,,,,,,,,,cosine,720,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8275914377838947e-06,False,5.4187840539648986e-05,0.012800259746180712,True,,invscaling,epsilon_insensitive,l2,0.413658635698922,0.001985117774888825,feature_type -68,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,quantile_transformer,353,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,1.195117915830476,square,7,446,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.048677279020287845,mean,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9330163695321677,False,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,48,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -73,no_encoding,no_coalescense,,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.050094191586811006,0.0003548828620495203,4.892652257294903,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,one_hot_encoding,minority_coalescer,0.013690195921333696,mean,quantile_transformer,927,uniform,,,fast_ica,,,,,,,,,,parallel,logcosh,686,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.3456663826588904,None,0.0,1,3,0.0,,,,,,,,,,,,feature_type -79,one_hot_encoding,minority_coalescer,0.013559976666217482,mean,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,81,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7074.759184676747,,,0.012970405947021068,0.017862025016886447,rbf,-1,False,0.0033700520159237702,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -85,no_encoding,minority_coalescer,0.043611723722987744,median,robust_scaler,,,0.8153794856777101,0.2542106848357464,fast_ica,,,,,,,,,,parallel,logcosh,45,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7574904554752734,None,0.0,2,4,0.0,,,,,,,,,,,,feature_type -90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -91,no_encoding,minority_coalescer,0.1781448810684882,median,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1750,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.34034793262861907,fwe,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -99,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9742867952016132,0.05179873386092966,extra_trees_preproc_for_regression,True,mse,None,0.9526743283178011,None,10,13,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7549749249776565,1.0,None,0.0,18,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,221.71686867531432,,,0.0011345895753789173,0.03605472173139597,rbf,-1,True,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -116,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -120,no_encoding,no_coalescense,,most_frequent,quantile_transformer,698,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,80.29508560042179,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7518614704756971,None,0.0,6,8,0.0,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -125,no_encoding,minority_coalescer,0.026860406930453065,mean,quantile_transformer,1603,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,adaboost,1.4602808978340507,linear,8,350,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.8011683337278442,0.27942314040423333,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,4.46362791740829e-05,0.02648994712354678,least_squares,255,None,157,1,3,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -142,one_hot_encoding,minority_coalescer,0.010000000000000004,median,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,412.2233201783493,,,0.0011345895753789173,0.09283610863148048,rbf,-1,False,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -143,no_encoding,no_coalescense,,median,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5334180754572447,False,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.8479567336155207,None,0.0,8,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,minority_coalescer,0.010000000000000004,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0007449695943118128,4.4022561284356343e-07,True,9.649841844227597e-07,3.5339262480338594e-06,300,1747.977219451044,0.001975027709452003,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9722422278717789,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -151,one_hot_encoding,no_coalescense,,median,quantile_transformer,1112,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1878422016198133,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -157,one_hot_encoding,minority_coalescer,0.1281015395729456,mean,robust_scaler,,,0.8161790810768598,0.194653955004446,feature_agglomeration,,,,,,,,,,,,,,cosine,average,232,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,5.740230445424651e-08,64.73594928324005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -167,no_encoding,no_coalescense,,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,1.3924788244078783,1.0,None,0.0,17,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -178,one_hot_encoding,minority_coalescer,0.00011498059478619926,median,minmax,,,,,extra_trees_preproc_for_regression,True,mae,None,0.959288288500526,None,16,17,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.4170386760209059,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,one_hot_encoding,minority_coalescer,0.060340760284342335,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00019882600974585908,2.3346820047921983e-05,72722.93613112147,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -189,one_hot_encoding,minority_coalescer,0.010687735018317065,most_frequent,quantile_transformer,715,normal,,,extra_trees_preproc_for_regression,False,mse,None,1.0,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type -193,one_hot_encoding,minority_coalescer,0.02455131058287564,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.006125673891992339,0.05755219835553661,least_squares,255,None,3,105,1,loss,1e-07,0.34204169177546356,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -198,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.75372906924827,0.25601670030188695,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1.142411064078065e-10,0.07991394289005148,least_squares,255,None,20,20,10,loss,1e-07,0.09462663894906431,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -205,one_hot_encoding,minority_coalescer,0.01700675326616134,median,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,average,151,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mse,1.0282554380863351,1.0,None,0.0,19,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.10380250296711345,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,313.80394795972063,,,0.003099223059277561,0.017317093115152473,rbf,-1,True,0.024277944281241755,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -217,no_encoding,minority_coalescer,0.3075379022640153,median,robust_scaler,,,0.75,0.2227403297034476,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.5867647620951765,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type -220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type -222,no_encoding,minority_coalescer,0.002591037601166213,mean,none,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,30.46212550428878,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.6717483424890341,None,0.0,20,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.7561109696348165,0.25,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9940190674957999,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,no_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051722240295206036,3.6874673577742775e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.00812390310244969,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03429300412839323,1.1283208177742579e-06,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -244,one_hot_encoding,minority_coalescer,0.009333160306231441,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.030976606236786153,1.1454014935657008e-06,26.06908483490808,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -250,no_encoding,minority_coalescer,0.0013706790419589269,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,36.16485710707785,mutual_info,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.752819740456617,None,0.0,19,15,0.0,,,,,,,,,,,,feature_type -253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -259,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.23965115028414283,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,460.76474217462135,,,0.005339969606710064,0.18388140886633259,rbf,-1,True,7.327296664444106e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -269,no_encoding,minority_coalescer,0.013501988241596803,mean,robust_scaler,,,0.779736398051298,0.25,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14290213312055283,fpr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19160000577407318,False,0.08447160725051764,True,1,squared_epsilon_insensitive,0.00013920807185728581,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -272,no_encoding,minority_coalescer,0.33019614194741737,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.042751149363097055,8.347428498783927e-08,57.94899150758775,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,robust_scaler,,,0.9591089096488032,0.014057471925138065,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9820315057084981,None,0.0,5,20,0.0,,,,,,,,,,,,feature_type -276,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.99052561287723,0.21219427729271156,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,2,None,1,15,1.0,97,,,,,,decision_tree,,,,,,,,,,,,,mae,0.45721730917643494,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,mean,quantile_transformer,11,normal,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0013353328453618832,1.8649142010631853e-07,3552.37611286252,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +5,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1640,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,6,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +11,no_encoding,minority_coalescer,0.007097225871050227,median,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +14,no_encoding,minority_coalescer,0.07108590272810227,median,minmax,,,,,extra_trees_preproc_for_regression,False,mae,None,1.0,None,2,3,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,9,19,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +18,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,6057.379756266077,,4,0.0011325324000394828,0.05291717770551696,rbf,-1,False,0.006686881523567499,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +20,one_hot_encoding,minority_coalescer,0.0015545063839819278,most_frequent,normalize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7595438766001632,1.0,None,0.0,19,18,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +22,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,adaboost,0.8420513715405185,square,10,480,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,one_hot_encoding,minority_coalescer,0.050324425846607804,median,robust_scaler,,,0.8007277620832998,0.21762816739338928,feature_agglomeration,,,,,,,,,,,,,,cosine,complete,47,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.8902072637076673,None,0.0,1,10,0.0,,,,,,,,,,,,feature_type +31,no_encoding,no_coalescense,,median,robust_scaler,,,0.8741033902488873,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0661055106742061,fwe,f_regression,ard_regression,,,,,0.00020075921434400403,5.67006828407246e-07,True,9.931380185031806e-09,1.1590381260870653e-10,300,98492.15951133538,0.0006697275349092505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +36,no_encoding,minority_coalescer,0.32955230566093613,mean,robust_scaler,,,0.7272718855134701,0.08801586389902688,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,adaboost,1.1471062217551702,linear,8,167,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +38,one_hot_encoding,minority_coalescer,0.060839696469393995,mean,robust_scaler,,,0.711042225237951,0.09731632673930204,feature_agglomeration,,,,,,,,,,,,,,euclidean,complete,158,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.30197308921090893,None,0.0,15,8,0.0,,,,,,,,,,,,feature_type +40,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +45,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9547830281251513,0.2818601517145067,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.8238476287807213,False,0.06889689389306164,True,1,squared_epsilon_insensitive,0.007803766455854209,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +46,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,12959.890271609733,,2,0.0026974286973887795,5.6258313008635,rbf,-1,False,0.006461735597762997,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,no_coalescense,,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,189,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.625928697925399,None,0.0,13,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +53,one_hot_encoding,minority_coalescer,0.006445714372024774,most_frequent,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023884335811188567,1.4170355084228403e-06,290.62967682941456,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +56,one_hot_encoding,minority_coalescer,0.00045833372603169316,most_frequent,minmax,,,,,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,4,None,5,13,1.0,95,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7632599342253943,None,0.0,6,3,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +62,no_encoding,minority_coalescer,0.012569841099741286,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.849869957463498,None,0.0,1,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +64,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,nystroem_sampler,,,,,,,,,,,,,,,,,,,,,,,,,,,,cosine,720,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.8275914377838947e-06,False,5.4187840539648986e-05,0.012800259746180712,True,,invscaling,epsilon_insensitive,l2,0.413658635698922,0.001985117774888825,feature_type +68,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,quantile_transformer,353,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,1.195117915830476,square,7,446,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.048677279020287845,mean,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.9330163695321677,False,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,48,2,uniform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +73,no_encoding,no_coalescense,,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.050094191586811006,0.0003548828620495203,4.892652257294903,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,one_hot_encoding,minority_coalescer,0.013690195921333696,mean,quantile_transformer,927,uniform,,,fast_ica,,,,,,,,,,parallel,logcosh,686,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.3456663826588904,None,0.0,1,3,0.0,,,,,,,,,,,,feature_type +79,one_hot_encoding,minority_coalescer,0.013559976666217482,mean,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,81,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7074.759184676747,,4,0.012970405947021068,0.017862025016886447,rbf,-1,False,0.0033700520159237702,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +85,no_encoding,minority_coalescer,0.043611723722987744,median,robust_scaler,,,0.8153794856777101,0.2542106848357464,fast_ica,,,,,,,,,,parallel,logcosh,45,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7574904554752734,None,0.0,2,4,0.0,,,,,,,,,,,,feature_type +90,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9967561696478335,0.026240229529164848,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1e-10,0.10799112896135016,least_squares,255,None,31,23,6,loss,1e-07,0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +91,no_encoding,minority_coalescer,0.1781448810684882,median,normalize,,,,,fast_ica,,,,,,,,,,parallel,logcosh,1750,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +93,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1148,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14778326778462142,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.7962284970386197e-10,0.05156555327055447,least_squares,255,None,35,12,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.34034793262861907,fwe,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +99,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.9742867952016132,0.05179873386092966,extra_trees_preproc_for_regression,True,mse,None,0.9526743283178011,None,10,13,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.7549749249776565,1.0,None,0.0,18,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,221.71686867531432,,2,0.0011345895753789173,0.03605472173139597,rbf,-1,True,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +104,no_encoding,no_coalescense,,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.00034869363637350924,auto,0.9,0.999,train,1e-08,2,0.00011524903693777931,32,31,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +114,no_encoding,minority_coalescer,0.00017544300366817,most_frequent,normalize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,1.0,None,9,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9524455578856136,None,0.0,16,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +116,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +120,no_encoding,no_coalescense,,most_frequent,quantile_transformer,698,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,80.29508560042179,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.7518614704756971,None,0.0,6,8,0.0,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +125,no_encoding,minority_coalescer,0.026860406930453065,mean,quantile_transformer,1603,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,adaboost,1.4602808978340507,linear,8,350,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,robust_scaler,,,0.8011683337278442,0.27942314040423333,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,4.46362791740829e-05,0.02648994712354678,least_squares,255,None,157,1,3,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +135,no_encoding,minority_coalescer,0.00029916315779804966,median,quantile_transformer,894,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5.348575844106585e-11,3.2802014300155454e-06,3027.1156250557783,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +142,one_hot_encoding,minority_coalescer,0.010000000000000004,median,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,412.2233201783493,,2,0.0011345895753789173,0.09283610863148048,rbf,-1,False,0.03171505247204187,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +143,no_encoding,no_coalescense,,median,standardize,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.5334180754572447,False,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.8479567336155207,None,0.0,8,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,minority_coalescer,0.010000000000000004,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0007449695943118128,4.4022561284356343e-07,True,9.649841844227597e-07,3.5339262480338594e-06,300,1747.977219451044,0.001975027709452003,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9722422278717789,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +151,one_hot_encoding,no_coalescense,,median,quantile_transformer,1112,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1878422016198133,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +155,one_hot_encoding,minority_coalescer,0.0366721769670183,median,quantile_transformer,1000,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,1.0,None,0.0,3,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +157,one_hot_encoding,minority_coalescer,0.1281015395729456,mean,robust_scaler,,,0.8161790810768598,0.194653955004446,feature_agglomeration,,,,,,,,,,,,,,cosine,average,232,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21,1,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +161,one_hot_encoding,no_coalescense,,mean,minmax,,,,,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,223.76455735355236,,2,0.001517791120341912,0.11103484780954016,rbf,-1,True,0.0015245364690368247,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,5.740230445424651e-08,64.73594928324005,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +167,no_encoding,no_coalescense,,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,1.3924788244078783,1.0,None,0.0,17,12,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +169,no_encoding,minority_coalescer,0.024758956617535213,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.22888181300939214,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,14.663900495367534,,4,0.0017630172009850445,0.02304400836020652,rbf,-1,False,0.01844898110925472,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +172,no_encoding,no_coalescense,,mean,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,385,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.238055706285357e-06,True,0.0035413980064916656,,True,,optimal,epsilon_insensitive,l2,,8.385117758196218e-05,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +178,one_hot_encoding,minority_coalescer,0.00011498059478619926,median,minmax,,,,,extra_trees_preproc_for_regression,True,mae,None,0.959288288500526,None,16,17,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.4170386760209059,1.0,None,0.0,12,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,minority_coalescer,0.006514462620801008,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00956904848708048,0.028094986340152454,least_squares,255,None,154,13,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +185,no_encoding,minority_coalescer,0.005832981135631713,median,none,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1984.2957886752215,,2,0.0037512089540495315,0.01898396920165309,rbf,-1,True,2.8040110952036678e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,one_hot_encoding,minority_coalescer,0.060340760284342335,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00019882600974585908,2.3346820047921983e-05,72722.93613112147,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +189,one_hot_encoding,minority_coalescer,0.010687735018317065,most_frequent,quantile_transformer,715,normal,,,extra_trees_preproc_for_regression,False,mse,None,1.0,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,2,2,0.0,,,,,,,,,,,,feature_type +193,one_hot_encoding,minority_coalescer,0.02455131058287564,median,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.006125673891992339,0.05755219835553661,least_squares,255,None,3,105,1,loss,1e-07,0.34204169177546356,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.008212209535832581,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.054214363629698496,5.913822061973022e-07,49143.56497731505,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +198,one_hot_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.75372906924827,0.25601670030188695,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,1.142411064078065e-10,0.07991394289005148,least_squares,255,None,20,20,10,loss,1e-07,0.09462663894906431,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,no_coalescense,,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.093528627734622e-10,0.056993947028442245,least_squares,255,None,96,7,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +205,one_hot_encoding,minority_coalescer,0.01700675326616134,median,standardize,,,,,feature_agglomeration,,,,,,,,,,,,,,cosine,average,151,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mse,1.0282554380863351,1.0,None,0.0,19,3,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +208,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.327916992926995,0.09896445264759084,least_squares,255,None,100,2,7,loss,1e-07,0.3111309300472759,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.10380250296711345,fpr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,313.80394795972063,,2,0.003099223059277561,0.017317093115152473,rbf,-1,True,0.024277944281241755,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +217,no_encoding,minority_coalescer,0.3075379022640153,median,robust_scaler,,,0.75,0.2227403297034476,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.5867647620951765,None,0.0,12,3,0.0,,,,,,,,,,,,feature_type +220,one_hot_encoding,minority_coalescer,0.0074901612162674314,median,quantile_transformer,1000,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.11837903484332993,fpr,f_regression,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0009210650955968192,False,5.162916923614626e-05,0.010000000000000014,True,,invscaling,epsilon_insensitive,l1,0.25,0.0011697312333031576,feature_type +222,no_encoding,minority_coalescer,0.002591037601166213,mean,none,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,30.46212550428878,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.6717483424890341,None,0.0,20,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.7561109696348165,0.25,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.9940190674957999,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,no_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051722240295206036,3.6874673577742775e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.00812390310244969,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03429300412839323,1.1283208177742579e-06,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +244,one_hot_encoding,minority_coalescer,0.009333160306231441,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.030976606236786153,1.1454014935657008e-06,26.06908483490808,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +250,no_encoding,minority_coalescer,0.0013706790419589269,most_frequent,minmax,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,36.16485710707785,mutual_info,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.752819740456617,None,0.0,19,15,0.0,,,,,,,,,,,,feature_type +253,no_encoding,minority_coalescer,0.26110798476806907,most_frequent,robust_scaler,,,0.7461372990016106,0.18481793818833603,extra_trees_preproc_for_regression,False,friedman_mse,None,0.754963329968397,None,13,20,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mae,None,0.9353841799433302,None,0.0,20,8,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +259,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.23965115028414283,fdr,f_regression,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,460.76474217462135,,4,0.005339969606710064,0.18388140886633259,rbf,-1,True,7.327296664444106e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +265,one_hot_encoding,no_coalescense,,mean,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,24.560906712337708,f_regression,,,,decision_tree,,,,,,,,,,,,,mae,0.8468780775417923,1.0,None,0.0,9,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +269,no_encoding,minority_coalescer,0.013501988241596803,mean,robust_scaler,,,0.779736398051298,0.25,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.14290213312055283,fpr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19160000577407318,False,0.08447160725051764,True,1,squared_epsilon_insensitive,0.00013920807185728581,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +272,no_encoding,minority_coalescer,0.33019614194741737,mean,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.042751149363097055,8.347428498783927e-08,57.94899150758775,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,robust_scaler,,,0.9591089096488032,0.014057471925138065,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9820315057084981,None,0.0,5,20,0.0,,,,,,,,,,,,feature_type +276,no_encoding,no_coalescense,,most_frequent,robust_scaler,,,0.99052561287723,0.21219427729271156,random_trees_embedding,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,2,None,1,15,1.0,97,,,,,,decision_tree,,,,,,,,,,,,,mae,0.45721730917643494,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.026353623217953964,mean,none,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.8609499435062687,None,9,15,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.023379450779571848,2.659222467552488e-10,292.5678884045162,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/r2_regression_dense/configurations.csv b/autosklearn/metalearning/files/r2_regression_dense/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/r2_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/r2_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/r2_regression_sparse/configurations.csv b/autosklearn/metalearning/files/r2_regression_sparse/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/r2_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/r2_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/root_mean_squared_error_regression_dense/configurations.csv b/autosklearn/metalearning/files/root_mean_squared_error_regression_dense/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/root_mean_squared_error_regression_dense/configurations.csv +++ b/autosklearn/metalearning/files/root_mean_squared_error_regression_dense/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/files/root_mean_squared_error_regression_sparse/configurations.csv b/autosklearn/metalearning/files/root_mean_squared_error_regression_sparse/configurations.csv index c1fbd54024..52fdb0ce9f 100644 --- a/autosklearn/metalearning/files/root_mean_squared_error_regression_sparse/configurations.csv +++ b/autosklearn/metalearning/files/root_mean_squared_error_regression_sparse/configurations.csv @@ -1,98 +1,98 @@ -idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ -2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type -10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type -23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type -40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type -58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type -73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type -79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type -95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type -171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type -217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type -221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type -224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type -228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type -235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type -285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +idx,data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__,data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction,data_preprocessor:feature_type:numerical_transformer:imputation:strategy,data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles,data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max,data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min,feature_preprocessor:__choice__,feature_preprocessor:extra_trees_preproc_for_regression:bootstrap,feature_preprocessor:extra_trees_preproc_for_regression:criterion,feature_preprocessor:extra_trees_preproc_for_regression:max_depth,feature_preprocessor:extra_trees_preproc_for_regression:max_features,feature_preprocessor:extra_trees_preproc_for_regression:max_leaf_nodes,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_leaf,feature_preprocessor:extra_trees_preproc_for_regression:min_samples_split,feature_preprocessor:extra_trees_preproc_for_regression:min_weight_fraction_leaf,feature_preprocessor:extra_trees_preproc_for_regression:n_estimators,feature_preprocessor:fast_ica:algorithm,feature_preprocessor:fast_ica:fun,feature_preprocessor:fast_ica:n_components,feature_preprocessor:fast_ica:whiten,feature_preprocessor:feature_agglomeration:affinity,feature_preprocessor:feature_agglomeration:linkage,feature_preprocessor:feature_agglomeration:n_clusters,feature_preprocessor:feature_agglomeration:pooling_func,feature_preprocessor:kernel_pca:coef0,feature_preprocessor:kernel_pca:degree,feature_preprocessor:kernel_pca:gamma,feature_preprocessor:kernel_pca:kernel,feature_preprocessor:kernel_pca:n_components,feature_preprocessor:kitchen_sinks:gamma,feature_preprocessor:kitchen_sinks:n_components,feature_preprocessor:nystroem_sampler:coef0,feature_preprocessor:nystroem_sampler:degree,feature_preprocessor:nystroem_sampler:gamma,feature_preprocessor:nystroem_sampler:kernel,feature_preprocessor:nystroem_sampler:n_components,feature_preprocessor:pca:keep_variance,feature_preprocessor:pca:whiten,feature_preprocessor:polynomial:degree,feature_preprocessor:polynomial:include_bias,feature_preprocessor:polynomial:interaction_only,feature_preprocessor:random_trees_embedding:bootstrap,feature_preprocessor:random_trees_embedding:max_depth,feature_preprocessor:random_trees_embedding:max_leaf_nodes,feature_preprocessor:random_trees_embedding:min_samples_leaf,feature_preprocessor:random_trees_embedding:min_samples_split,feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf,feature_preprocessor:random_trees_embedding:n_estimators,feature_preprocessor:select_percentile_regression:percentile,feature_preprocessor:select_percentile_regression:score_func,feature_preprocessor:select_rates_regression:alpha,feature_preprocessor:select_rates_regression:mode,feature_preprocessor:select_rates_regression:score_func,regressor:__choice__,regressor:adaboost:learning_rate,regressor:adaboost:loss,regressor:adaboost:max_depth,regressor:adaboost:n_estimators,regressor:ard_regression:alpha_1,regressor:ard_regression:alpha_2,regressor:ard_regression:fit_intercept,regressor:ard_regression:lambda_1,regressor:ard_regression:lambda_2,regressor:ard_regression:n_iter,regressor:ard_regression:threshold_lambda,regressor:ard_regression:tol,regressor:decision_tree:criterion,regressor:decision_tree:max_depth_factor,regressor:decision_tree:max_features,regressor:decision_tree:max_leaf_nodes,regressor:decision_tree:min_impurity_decrease,regressor:decision_tree:min_samples_leaf,regressor:decision_tree:min_samples_split,regressor:decision_tree:min_weight_fraction_leaf,regressor:extra_trees:bootstrap,regressor:extra_trees:criterion,regressor:extra_trees:max_depth,regressor:extra_trees:max_features,regressor:extra_trees:max_leaf_nodes,regressor:extra_trees:min_impurity_decrease,regressor:extra_trees:min_samples_leaf,regressor:extra_trees:min_samples_split,regressor:extra_trees:min_weight_fraction_leaf,regressor:gaussian_process:alpha,regressor:gaussian_process:thetaL,regressor:gaussian_process:thetaU,regressor:gradient_boosting:early_stop,regressor:gradient_boosting:l2_regularization,regressor:gradient_boosting:learning_rate,regressor:gradient_boosting:loss,regressor:gradient_boosting:max_bins,regressor:gradient_boosting:max_depth,regressor:gradient_boosting:max_leaf_nodes,regressor:gradient_boosting:min_samples_leaf,regressor:gradient_boosting:n_iter_no_change,regressor:gradient_boosting:scoring,regressor:gradient_boosting:tol,regressor:gradient_boosting:validation_fraction,regressor:k_nearest_neighbors:n_neighbors,regressor:k_nearest_neighbors:p,regressor:k_nearest_neighbors:weights,regressor:liblinear_svr:C,regressor:liblinear_svr:dual,regressor:liblinear_svr:epsilon,regressor:liblinear_svr:fit_intercept,regressor:liblinear_svr:intercept_scaling,regressor:liblinear_svr:loss,regressor:liblinear_svr:tol,regressor:libsvm_svr:C,regressor:libsvm_svr:coef0,regressor:libsvm_svr:degree,regressor:libsvm_svr:epsilon,regressor:libsvm_svr:gamma,regressor:libsvm_svr:kernel,regressor:libsvm_svr:max_iter,regressor:libsvm_svr:shrinking,regressor:libsvm_svr:tol,regressor:mlp:activation,regressor:mlp:alpha,regressor:mlp:batch_size,regressor:mlp:beta_1,regressor:mlp:beta_2,regressor:mlp:early_stopping,regressor:mlp:epsilon,regressor:mlp:hidden_layer_depth,regressor:mlp:learning_rate_init,regressor:mlp:n_iter_no_change,regressor:mlp:num_nodes_per_layer,regressor:mlp:shuffle,regressor:mlp:solver,regressor:mlp:tol,regressor:mlp:validation_fraction,regressor:random_forest:bootstrap,regressor:random_forest:criterion,regressor:random_forest:max_depth,regressor:random_forest:max_features,regressor:random_forest:max_leaf_nodes,regressor:random_forest:min_impurity_decrease,regressor:random_forest:min_samples_leaf,regressor:random_forest:min_samples_split,regressor:random_forest:min_weight_fraction_leaf,regressor:sgd:alpha,regressor:sgd:average,regressor:sgd:epsilon,regressor:sgd:eta0,regressor:sgd:fit_intercept,regressor:sgd:l1_ratio,regressor:sgd:learning_rate,regressor:sgd:loss,regressor:sgd:penalty,regressor:sgd:power_t,regressor:sgd:tol,data_preprocessor:__choice__ +2,no_encoding,no_coalescense,,most_frequent,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,fpr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.019645201003537352,1.1170068633409441e-07,130.632960269528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +6,one_hot_encoding,minority_coalescer,0.000400759453878678,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09988990258830989,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,3.0002886744200357e-06,0.015673535665067875,least_squares,255,None,7,23,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +7,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,809,uniform,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.01806079811541296,False,,0.015540128437738566,True,0.9326390049807726,constant,squared_loss,elasticnet,,0.00010576654619459039,feature_type +10,one_hot_encoding,minority_coalescer,0.00010349207190621693,mean,quantile_transformer,229,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.055967923991199715,1.8694491708470566e-10,1.8954846844548174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +13,one_hot_encoding,no_coalescense,,mean,standardize,,,,,extra_trees_preproc_for_regression,False,mse,None,0.7631509999921062,None,2,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.037842605388564e-07,auto,0.9,0.999,valid,1e-08,3,0.0001120732057918536,32,100,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +17,one_hot_encoding,minority_coalescer,0.010250361463446604,mean,minmax,,,,,fast_ica,,,,,,,,,,parallel,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,194.03096694114694,,3,0.0010214279074797082,0.20113065159176252,rbf,-1,True,0.0206281932709369,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +19,one_hot_encoding,minority_coalescer,0.0013057623156653984,median,robust_scaler,,,0.7384386306109247,0.13619830011156256,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,47.935402876904554,f_regression,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.1920798638358104e-06,True,0.1,2.5662550861454332e-06,True,,invscaling,squared_epsilon_insensitive,l2,0.16443692558514034,7.823786229838958e-05,feature_type +23,no_encoding,no_coalescense,,mean,quantile_transformer,626,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1441108530403702,3.669712858764878e-08,63.38119089797623,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +26,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7194207293244546,0.25,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1e-10,0.04073473488071534,least_squares,255,None,22,4,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +28,no_encoding,minority_coalescer,0.00397868572473159,mean,robust_scaler,,,0.7840854273341944,0.11376189722146844,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +31,no_encoding,minority_coalescer,0.00014899709205673406,most_frequent,robust_scaler,,,0.8498515960462831,0.2493877412289307,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.074440365115905,mutual_info,,,,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,4.184987756432487e-09,4.238533890074848e-07,300,78251.58542976103,0.0006951835906397672,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +34,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,952,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,1.8428972335335263e-10,0.012607824914758717,least_squares,255,None,10,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +39,no_encoding,minority_coalescer,0.013069046428333956,mean,quantile_transformer,1389,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.7517792740390704,None,0.0,6,2,0.0,,,,,,,,,,,,feature_type +40,no_encoding,minority_coalescer,0.032459358237118964,mean,quantile_transformer,245,normal,,,fast_ica,,,,,,,,,,parallel,exp,1538,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.010616529299999268,3.3168147703951036e-07,4.182958258383621,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +43,no_encoding,no_coalescense,,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.034904198000955684,fdr,f_regression,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,35.012615180923554,False,0.7326132441316412,True,1,squared_epsilon_insensitive,0.00012982617662684841,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +48,no_encoding,minority_coalescer,0.007285175031750927,most_frequent,standardize,,,,,kernel_pca,,,,,,,,,,,,,,,,,,,,0.3892888368591911,rbf,1205,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,527.2805278622302,False,0.0023914129516101872,True,1,squared_epsilon_insensitive,3.308026672204565e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +50,one_hot_encoding,minority_coalescer,0.01047631022335275,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.5535883939348928,None,0.0,2,16,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +54,one_hot_encoding,minority_coalescer,0.06501698406855842,most_frequent,standardize,,,,,fast_ica,,,,,,,,,,parallel,cube,184,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.06138907077602462,2.1193402649051655e-10,10.458248457966066,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +57,one_hot_encoding,minority_coalescer,0.0010413452644415357,mean,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.6277363920171745,None,0.0,6,15,0.0,,,,,,,,,,,,feature_type +58,one_hot_encoding,no_coalescense,,median,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.538520410186127,f_regression,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.036388789196735646,False,0.0012739627397164333,True,1,squared_epsilon_insensitive,0.020180468804448126,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +63,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.9615263480351033,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +66,no_encoding,minority_coalescer,0.00016754269505428354,median,quantile_transformer,170,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.6962692885049272,None,0.0,17,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +67,no_encoding,no_coalescense,,median,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0018018055158809108,0.05048450688348591,least_squares,255,None,3,1,19,loss,1e-07,0.19819612428903174,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +70,no_encoding,minority_coalescer,0.015521269213050653,mean,quantile_transformer,472,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.1509528252746419,None,0.0,17,2,0.0,,,,,,,,,,,,feature_type +73,no_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,feature_agglomeration,,,,,,,,,,,,,,manhattan,average,26,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.051300886003085196,0.00012664987999260594,4.670733780898565,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +77,no_encoding,minority_coalescer,0.28144748021848814,mean,robust_scaler,,,0.8771493204875395,0.13693823573634356,fast_ica,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,1.0,None,0.0,1,2,0.0,,,,,,,,,,,,feature_type +79,no_encoding,minority_coalescer,0.042366198588653134,most_frequent,minmax,,,,,fast_ica,,,,,,,,,,deflation,logcosh,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7277.320824640944,,2,0.0013490872095510865,0.03233188643981015,rbf,-1,True,0.0034607903098849255,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +82,no_encoding,minority_coalescer,0.05607310321489163,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,28831.968873651404,0.39386733846748023,3,0.12370783564202235,0.0026233747431769617,poly,-1,True,4.714268123196739e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +86,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0003701926442639788,2.2118001735899097e-07,True,1.2037591637980971e-06,4.358378124977852e-09,300,1136.5286041327277,0.021944240404849075,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +89,one_hot_encoding,minority_coalescer,0.0011912229897445134,mean,standardize,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.005746611563553693,0.0913971028976721,least_squares,255,None,9,2,20,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +92,no_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.00023501461451248853,auto,0.9,0.999,train,1e-08,1,0.00014972142082858664,32,234,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,feature_type +95,one_hot_encoding,minority_coalescer,0.010000000000000004,median,robust_scaler,,,0.7912621507143142,0.2637968890661204,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,5.997418027353535e-10,0.12286466971783992,least_squares,255,None,26,8,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +98,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7010465420634562,0.19032833128592427,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,31,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.7612289466695656,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +101,one_hot_encoding,no_coalescense,,median,robust_scaler,,,0.7548820011150241,0.02964869664953053,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,3.1008789875481045e-10,0.9742767231340886,least_squares,255,None,76,8,10,loss,1e-07,0.08508571055472691,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +102,no_encoding,minority_coalescer,0.00829519231049576,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,ard_regression,,,,,4.7044575285722365e-05,0.000629863807127318,True,7.584067704707025e-10,3.923255608410879e-08,300,4052.403778957396,0.009359388994186051,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +105,one_hot_encoding,no_coalescense,,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4686252124441843,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.0038606936054114,0.020266625124044115,least_squares,255,None,458,158,18,loss,1e-07,0.27775972890692574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +107,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7727512096172742,0.22461598115758682,feature_agglomeration,,,,,,,,,,,,,,manhattan,complete,21,max,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,2.208787572338781e-05,0.036087332404571744,least_squares,255,None,64,3,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +110,no_encoding,minority_coalescer,0.0006869013905922761,mean,quantile_transformer,1352,normal,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07357548990881542,fpr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,3.20414911914726e-10,0.1279702444496931,least_squares,255,None,63,19,8,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +115,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007694645303288904,6.907464089785431e-06,True,5.725240603355948e-06,2.2747405613470773e-05,300,58747.57814168738,5.818442213575333e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +117,no_encoding,no_coalescense,,most_frequent,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2031136218970144,,,0.340528001967228,,linear,-1,False,4.070347915643521e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +119,no_encoding,minority_coalescer,0.0024824409953506307,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.8276036843429629,None,0.0,5,13,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +124,one_hot_encoding,no_coalescense,,median,quantile_transformer,1779,normal,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,4.957506578736309e-07,0.05200721900508807,least_squares,255,None,4,2,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +126,no_encoding,minority_coalescer,0.010222641912650656,median,quantile_transformer,1092,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,59,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,adaboost,0.010571278032840276,linear,10,116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +128,one_hot_encoding,no_coalescense,,most_frequent,quantile_transformer,1040,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.27381234568573e-07,0.02758260805263155,least_squares,255,None,57,5,1,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +132,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +136,one_hot_encoding,minority_coalescer,0.008225465238838799,most_frequent,quantile_transformer,709,uniform,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2.1305589487469477e-06,0.0002524679984945707,57.09316986719562,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +138,no_encoding,minority_coalescer,0.018981164720696175,median,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.03175182874113965,0.00030344963288406407,64164.586360277535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +140,no_encoding,no_coalescense,,median,minmax,,,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,272,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.5120356089629183,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +144,one_hot_encoding,minority_coalescer,0.0033650478527174027,median,none,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7303174358688075,None,0.0,10,10,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +148,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,ard_regression,,,,,0.0005879259823371087,3.410007832100047e-07,True,1.6597956274062097e-05,9.910691609164284e-10,300,2203.910297381356,0.006471761365578467,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +150,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.9797793053686011,None,0.0,1,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +153,one_hot_encoding,minority_coalescer,0.00013899061331455512,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.19203734614573903,fdr,f_regression,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.28764734226521,1.5934220315148466e-07,59443.23501615305,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +156,no_encoding,minority_coalescer,0.013018052591541176,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9734334465992716,None,0.0,2,9,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +158,one_hot_encoding,minority_coalescer,0.0001897686484596082,median,robust_scaler,,,0.7768342897092668,0.27222390764426924,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00025503968621419157,1.161826998793312e-08,80.91415602800988,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +160,one_hot_encoding,no_coalescense,,mean,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,,,ard_regression,,,,,0.0007518973788007592,2.1035374255689506e-10,True,1.9130145173139983e-06,6.539971988038889e-10,300,3146.7808694741443,0.0003708004149981124,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +163,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.283161627129086,7.245332579977274e-08,36.28453043772396,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +168,one_hot_encoding,minority_coalescer,0.001512533360913062,median,none,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.07521950921951931,fwe,f_regression,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.7805550079834586,None,0.0,3,20,0.0,,,,,,,,,,,,feature_type +171,one_hot_encoding,no_coalescense,,mean,quantile_transformer,268,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,107,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.42928092501196696,1.4435895787652725e-07,8.108685026706572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +174,one_hot_encoding,no_coalescense,,most_frequent,none,,,,,fast_ica,,,,,,,,,,deflation,exp,671,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,4.124442820298477e-05,1.161663644436331e-06,True,1.5236144126449076e-09,0.00046882633285888015,300,86828.75337540788,0.0010379122151177183,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +176,one_hot_encoding,minority_coalescer,0.019566163649872924,most_frequent,robust_scaler,,,0.7200608810425068,0.22968043330398744,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.18539282936320728,fwe,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,mae,None,0.9029989558220115,None,0.0,1,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +179,no_encoding,no_coalescense,,most_frequent,normalize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,91.55750915031366,mutual_info,,,,extra_trees,,,,,,,,,,,,,,,,,,,,,True,friedman_mse,None,0.24739007040418165,None,0.0,4,17,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +182,one_hot_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,valid,0.013442521728157596,0.15308825058123207,least_squares,255,None,26,6,20,loss,1e-07,0.08504769517258337,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +184,no_encoding,no_coalescense,,mean,normalize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,ard_regression,,,,,6.074038958967586e-05,4.934531533509717e-07,True,0.00034504048920015604,1.4861857758465898e-06,300,1995.6088649916076,0.0033943514455527686,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +186,no_encoding,minority_coalescer,0.010515112787842862,most_frequent,quantile_transformer,583,uniform,,,feature_agglomeration,,,,,,,,,,,,,,euclidean,average,5,mean,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00015169626319121407,0.0006853872700383563,80227.86048666916,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +191,one_hot_encoding,minority_coalescer,0.039520728280417826,mean,minmax,,,,,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,5.288249085278679,4176,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,224.245634141281,False,0.009173958659191201,True,1,squared_epsilon_insensitive,1.9920161216131034e-05,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +193,no_encoding,no_coalescense,,mean,robust_scaler,,,0.7550402508982338,0.24842410508333093,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.238367840293606e-10,0.026111542610815466,least_squares,255,None,177,37,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +197,one_hot_encoding,minority_coalescer,0.009368863843266871,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02846835702208294,1.2011941574832026e-06,67511.87095482116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +199,no_encoding,minority_coalescer,0.44467269258042313,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,6.676910625638355e-09,0.052530803029130685,least_squares,255,None,31,20,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +201,one_hot_encoding,minority_coalescer,0.0022298554040543614,most_frequent,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,1.3053128884667706e-10,0.05594167483605857,least_squares,255,None,85,10,4,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +204,no_encoding,minority_coalescer,0.22734310669224594,most_frequent,robust_scaler,,,0.9761574925741068,0.2928944546265386,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.04882039966006706,fdr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,False,friedman_mse,None,0.9982746726091221,None,0.0,4,2,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +207,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.085630700044881e-10,0.12392806728650493,least_squares,255,None,31,25,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +211,no_encoding,no_coalescense,,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,180.22479438529933,,4,0.0012571604901280202,0.10272820821863678,rbf,-1,False,0.02945259690926852,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +214,one_hot_encoding,no_coalescense,,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,True,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.00038839431353936653,False,,0.0007930509929393179,True,0.61724426807128,constant,squared_loss,elasticnet,,1.285973891441802e-05,feature_type +217,one_hot_encoding,minority_coalescer,0.00013426375251483367,mean,quantile_transformer,1000,normal,,,extra_trees_preproc_for_regression,False,mae,None,0.9485456391530016,None,2,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,True,mae,None,1.0,None,0.0,1,5,0.0,,,,,,,,,,,,feature_type +221,one_hot_encoding,minority_coalescer,0.009016977995123954,most_frequent,standardize,,,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,94.50207398648911,f_regression,,,,random_forest,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,False,mse,None,0.18485496201511814,None,0.0,18,18,0.0,,,,,,,,,,,,feature_type +224,one_hot_encoding,no_coalescense,,median,quantile_transformer,1016,uniform,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3992671482410072,fpr,f_regression,extra_trees,,,,,,,,,,,,,,,,,,,,,True,mse,None,0.2477939208870194,None,0.0,2,4,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +225,one_hot_encoding,minority_coalescer,0.010356286469647443,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,True,,,,,,,,,,,,,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,6.108449182457731e-05,auto,0.9,0.999,valid,1e-08,3,0.00027704755935258253,32,101,True,adam,0.0001,0.1,,,,,,,,,,,,,,,,,,,,,feature_type +228,no_encoding,minority_coalescer,0.0005112414168823774,median,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.4807408968132736,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,5.775517309881741e-08,0.020024969424259676,least_squares,255,None,156,85,16,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +232,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,False,False,,,,,,,,,,,,,sgd,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0006517033225329654,False,0.012150149892783745,0.016444224834275295,True,1.7462342366289323e-09,invscaling,epsilon_insensitive,elasticnet,0.21521743568582094,0.002431731981071206,feature_type +235,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,standardize,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.035440248140559884,1.142436233486746e-09,2235.498740920408,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +237,no_encoding,minority_coalescer,0.007741331259480108,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.020932011717701825,7.512295484675918e-08,427.92917011793116,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +240,one_hot_encoding,minority_coalescer,0.010000000000000004,mean,standardize,,,,,extra_trees_preproc_for_regression,True,friedman_mse,None,0.969236220539822,None,1,2,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.013068012551322245,2.979079708104577e-07,50599.0613366392,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +245,one_hot_encoding,minority_coalescer,0.052483220498897844,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.017488165983844263,4.199154538507709e-05,18825.14718012417,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +247,one_hot_encoding,minority_coalescer,0.014192135928954746,median,standardize,,,,,fast_ica,,,,,,,,,,deflation,exp,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,libsvm_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.4272136443763257,0.2694141260648879,2,0.10000000000000006,0.05757315877344016,poly,-1,False,0.0010000000000000002,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +251,no_encoding,no_coalescense,,median,standardize,,,,,extra_trees_preproc_for_regression,True,mae,None,0.7533134853493275,None,1,4,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.8025720428105109,0.2759754081799624,least_squares,255,None,18,172,11,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +252,one_hot_encoding,minority_coalescer,0.0001745391328519669,most_frequent,robust_scaler,,,0.8057830372269097,0.24982831110057324,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.3621762718897781,fwe,f_regression,ard_regression,,,,,2.7664515192592053e-05,9.504988116581138e-07,True,6.50650698230178e-09,4.238533890074848e-07,300,78251.58542976103,0.0007301343236220855,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +257,one_hot_encoding,minority_coalescer,0.0216783950539192,mean,none,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,False,False,,,,,,,,,,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,0.00010889929093369623,0.013461560146088193,least_squares,255,None,922,78,19,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +258,no_encoding,minority_coalescer,0.06944124485705933,median,robust_scaler,,,0.9459191670017113,0.19705568051981365,feature_agglomeration,,,,,,,,,,,,,,euclidean,ward,25,median,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ard_regression,,,,,1.3451538602739027e-05,9.646408445137836e-08,True,2.5198380744059647e-07,3.03274213695262e-10,300,1212.6400146193068,0.0014720713972345503,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +262,no_encoding,minority_coalescer,0.0017516626568532072,median,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,False,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.09414230179794553,1.3692618062770113e-09,15642.37580197983,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +266,no_encoding,minority_coalescer,0.0002660105205394136,median,none,,,,,fast_ica,,,,,,,,,,deflation,logcosh,977,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,liblinear_svr,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1637099972824213,False,0.5342957861386396,True,1,squared_epsilon_insensitive,0.00011557548242116838,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +268,no_encoding,minority_coalescer,0.019298178366706394,mean,minmax,,,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,decision_tree,,,,,,,,,,,,,mae,0.2781806943014362,1.0,None,0.0,17,7,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +270,one_hot_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,True,True,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.037731974209709904,5.002213042554931e-07,22409.945864393645,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +274,one_hot_encoding,minority_coalescer,0.0002682359625135144,mean,quantile_transformer,1567,uniform,,,select_percentile_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,85.70259306141033,f_regression,,,,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,train,6.536723381440492e-05,0.03940103065495631,least_squares,255,None,77,9,7,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +276,one_hot_encoding,no_coalescense,,median,minmax,,,,,pca,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.991729015298316,True,,,,,,,,,,,,,,,,adaboost,0.019011223549222432,linear,9,395,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +279,no_encoding,minority_coalescer,0.4873131661139947,mean,standardize,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.43441750135120694,fpr,f_regression,k_nearest_neighbors,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,2,distance,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +282,one_hot_encoding,minority_coalescer,0.024334629729258105,most_frequent,standardize,,,,,extra_trees_preproc_for_regression,False,mae,None,0.9280962404032027,None,1,11,0.0,100,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,gaussian_process,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.02341626598167312,1.0753192773067984e-09,30626.12455645968,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type +285,no_encoding,no_coalescense,,mean,minmax,,,,,select_rates_regression,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.2186105871515939,fdr,f_regression,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,off,0.10377482408306521,0.016255400771699312,least_squares,255,None,65,70,,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,feature_type diff --git a/autosklearn/metalearning/metafeatures/metafeatures.py b/autosklearn/metalearning/metafeatures/metafeatures.py index 79f5626d71..5cccd31267 100644 --- a/autosklearn/metalearning/metafeatures/metafeatures.py +++ b/autosklearn/metalearning/metafeatures/metafeatures.py @@ -184,7 +184,7 @@ def _calculate(self, X, y, logger, categorical): def _calculate_sparse(self, X, y, logger, categorical): data = [True if not np.isfinite(x) else False for x in X.data] missing = X.__class__((data, X.indices, X.indptr), shape=X.shape, - dtype=bool) + dtype=np.bool) return missing diff --git a/autosklearn/metalearning/metalearning/meta_base.py b/autosklearn/metalearning/metalearning/meta_base.py index 13653de528..45f8b44ae0 100644 --- a/autosklearn/metalearning/metalearning/meta_base.py +++ b/autosklearn/metalearning/metalearning/meta_base.py @@ -1,5 +1,3 @@ -from collections import OrderedDict - import numpy as np import pandas as pd @@ -41,7 +39,7 @@ def __init__(self, configuration_space, aslib_directory, logger): aslib_reader = aslib_simple.AlgorithmSelectionProblem(self.aslib_directory) self.metafeatures = aslib_reader.metafeatures - self.algorithm_runs: OrderedDict[str, pd.DataFrame] = aslib_reader.algorithm_runs + self.algorithm_runs = aslib_reader.algorithm_runs self.configurations = aslib_reader.configurations configurations = dict() @@ -67,7 +65,7 @@ def add_dataset(self, name, metafeatures): self.metafeatures.drop(name.lower(), inplace=True) self.metafeatures = self.metafeatures.append(metafeatures) - runs = pd.Series([], name=name, dtype=float) + runs = pd.Series([], name=name) for metric in self.algorithm_runs.keys(): self.algorithm_runs[metric].append(runs) diff --git a/autosklearn/metalearning/optimizers/metalearn_optimizer/metalearner.py b/autosklearn/metalearning/optimizers/metalearn_optimizer/metalearner.py index ec9ea141c8..6092343a7a 100644 --- a/autosklearn/metalearning/optimizers/metalearn_optimizer/metalearner.py +++ b/autosklearn/metalearning/optimizers/metalearn_optimizer/metalearner.py @@ -111,8 +111,7 @@ def _learn(self, exclude_double_configurations=True): except KeyError: # TODO should I really except this? self.logger.info("Could not find runs for instance %s" % task_id) - runs[task_id] = pd.Series([], name=task_id, dtype=float) - + runs[task_id] = pd.Series([], name=task_id) runs = pd.DataFrame(runs) kND.fit(all_other_metafeatures, runs) diff --git a/autosklearn/metrics/__init__.py b/autosklearn/metrics/__init__.py index cb6920979f..34fb029b8a 100644 --- a/autosklearn/metrics/__init__.py +++ b/autosklearn/metrics/__init__.py @@ -1,6 +1,5 @@ from abc import ABCMeta, abstractmethod from functools import partial -from itertools import product from typing import Any, Callable, Dict, List, Optional, Union, cast import numpy as np @@ -279,14 +278,16 @@ def make_scorer( optimum=0, worst_possible_result=MAXINT, greater_is_better=False) - -r2 = make_scorer('r2', sklearn.metrics.r2_score) +r2 = make_scorer('r2', + sklearn.metrics.r2_score) # Standard Classification Scores accuracy = make_scorer('accuracy', sklearn.metrics.accuracy_score) balanced_accuracy = make_scorer('balanced_accuracy', sklearn.metrics.balanced_accuracy_score) +f1 = make_scorer('f1', + sklearn.metrics.f1_score) # Score functions that need decision values roc_auc = make_scorer('roc_auc', @@ -296,20 +297,10 @@ def make_scorer( average_precision = make_scorer('average_precision', sklearn.metrics.average_precision_score, needs_threshold=True) - -# NOTE: zero_division -# -# Specified as the explicit default, see sklearn docs: -# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn-metrics-precision-score -precision = make_scorer( - 'precision', partial(sklearn.metrics.precision_score, zero_division=0) -) -recall = make_scorer( - 'recall', partial(sklearn.metrics.recall_score, zero_division=0) -) -f1 = make_scorer( - 'f1', partial(sklearn.metrics.f1_score, zero_division=0) -) +precision = make_scorer('precision', + sklearn.metrics.precision_score) +recall = make_scorer('recall', + sklearn.metrics.recall_score) # Score function for probabilistic classification log_loss = make_scorer('log_loss', @@ -321,39 +312,29 @@ def make_scorer( # TODO what about mathews correlation coefficient etc? -REGRESSION_METRICS = { - scorer.name: scorer - for scorer in [ - mean_absolute_error, mean_squared_error, root_mean_squared_error, - mean_squared_log_error, median_absolute_error, r2 - ] -} - -CLASSIFICATION_METRICS = { - scorer.name: scorer - for scorer in [ - accuracy, balanced_accuracy, roc_auc, average_precision, log_loss - ] -} - -# NOTE: zero_division -# -# Specified as the explicit default, see sklearn docs: -# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn-metrics-precision-score -for (base_name, sklearn_metric), average in product( - [ - ('precision', sklearn.metrics.precision_score), - ('recall', sklearn.metrics.recall_score), - ('f1', sklearn.metrics.f1_score), - ], - ['macro', 'micro', 'samples', 'weighted'] -): - name = f'{base_name}_{average}' - scorer = make_scorer( - name, partial(sklearn_metric, pos_label=None, average=average, zero_division=0) - ) - globals()[name] = scorer # Adds scorer to the module scope - CLASSIFICATION_METRICS[name] = scorer +REGRESSION_METRICS = dict() +for scorer in [mean_absolute_error, mean_squared_error, root_mean_squared_error, + mean_squared_log_error, median_absolute_error, r2]: + REGRESSION_METRICS[scorer.name] = scorer + +CLASSIFICATION_METRICS = dict() + +for scorer in [accuracy, balanced_accuracy, roc_auc, average_precision, + log_loss]: + CLASSIFICATION_METRICS[scorer.name] = scorer + +for name, metric in [('precision', sklearn.metrics.precision_score), + ('recall', sklearn.metrics.recall_score), + ('f1', sklearn.metrics.f1_score)]: + globals()[name] = make_scorer(name, metric) + CLASSIFICATION_METRICS[name] = globals()[name] + for average in ['macro', 'micro', 'samples', 'weighted']: + qualified_name = '{0}_{1}'.format(name, average) + globals()[qualified_name] = make_scorer(qualified_name, + partial(metric, + pos_label=None, + average=average)) + CLASSIFICATION_METRICS[qualified_name] = globals()[qualified_name] def calculate_score( diff --git a/autosklearn/pipeline/components/base.py b/autosklearn/pipeline/components/base.py index 5864a2a5d6..3e02f7d4d8 100644 --- a/autosklearn/pipeline/components/base.py +++ b/autosklearn/pipeline/components/base.py @@ -147,16 +147,13 @@ def __str__(self): class IterativeComponent(AutoSklearnComponent): - def fit(self, X, y, sample_weight=None): self.iterative_fit(X, y, n_iter=2, refit=True) - iteration = 2 while not self.configuration_fully_fitted(): n_iter = int(2 ** iteration / 2) self.iterative_fit(X, y, n_iter=n_iter, refit=False) iteration += 1 - return self @staticmethod @@ -168,16 +165,15 @@ def get_current_iter(self): class IterativeComponentWithSampleWeight(AutoSklearnComponent): - def fit(self, X, y, sample_weight=None): - self.iterative_fit(X, y, n_iter=2, refit=True, sample_weight=sample_weight) - + self.iterative_fit( + X, y, n_iter=2, refit=True, sample_weight=sample_weight + ) iteration = 2 while not self.configuration_fully_fitted(): n_iter = int(2 ** iteration / 2) - self.iterative_fit(X, y, n_iter=n_iter, refit=False, sample_weight=sample_weight) + self.iterative_fit(X, y, n_iter=n_iter, sample_weight=sample_weight) iteration += 1 - return self @staticmethod diff --git a/autosklearn/pipeline/components/data_preprocessing/categorical_encoding/encoding.py b/autosklearn/pipeline/components/data_preprocessing/categorical_encoding/encoding.py index 3ebb411457..4489c7b61a 100644 --- a/autosklearn/pipeline/components/data_preprocessing/categorical_encoding/encoding.py +++ b/autosklearn/pipeline/components/data_preprocessing/categorical_encoding/encoding.py @@ -27,14 +27,7 @@ def fit(self, X: PIPELINE_DATA_DTYPE, categories='auto', handle_unknown='use_encoded_value', unknown_value=-1, ) self.preprocessor.fit(X, y) - return self - else: - # TODO sparse_encoding of negative labels - # - # The next step in the pipeline relies on positive labels - # Given a categorical column [[0], [-1]], the next step will fail - # unless we can fix this encoding - return self + return self def transform(self, X: PIPELINE_DATA_DTYPE) -> PIPELINE_DATA_DTYPE: if scipy.sparse.issparse(X): diff --git a/autosklearn/pipeline/components/data_preprocessing/imputation/categorical_imputation.py b/autosklearn/pipeline/components/data_preprocessing/imputation/categorical_imputation.py index 519155ea20..f0fbbbd53d 100644 --- a/autosklearn/pipeline/components/data_preprocessing/imputation/categorical_imputation.py +++ b/autosklearn/pipeline/components/data_preprocessing/imputation/categorical_imputation.py @@ -3,7 +3,6 @@ from ConfigSpace.configuration_space import ConfigurationSpace import numpy as np -from scipy.sparse import spmatrix from autosklearn.pipeline.base import DATASET_PROPERTIES_TYPE, PIPELINE_DATA_DTYPE from autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm @@ -29,32 +28,24 @@ def fit(self, X: PIPELINE_DATA_DTYPE, y: Optional[PIPELINE_DATA_DTYPE] = None) -> 'CategoricalImputation': import sklearn.impute + fill_value = None if hasattr(X, 'columns'): kind = X[X.columns[-1]].dtype.kind else: # Series, sparse and numpy have dtype # Only DataFrame does not kind = X.dtype.kind - - fill_value: Optional[int] = None - - number_kinds = ("i", "u", "f") - if kind in number_kinds: - if isinstance(X, spmatrix): - # TODO negative labels - # - # Previously this was the behaviour and went - # unnoticed. Imputing negative labels results in - # the cateogircal shift step failing as the ordinal - # encoder can't fix negative labels. - # This is here to document the behaviour explicitly - fill_value = 0 - else: - fill_value = min(np.unique(X)) - 1 + if kind in ("i", "u", "f"): + # We do not want to impute a category with the default + # value (0 is the default) in case such default is in the + # train data already! + fill_value = 0 + unique = np.unique(X) + while fill_value in unique: + fill_value -= 1 self.preprocessor = sklearn.impute.SimpleImputer( - strategy='constant', copy=False, fill_value=fill_value - ) + strategy='constant', copy=False, fill_value=fill_value) self.preprocessor.fit(X) return self diff --git a/autosklearn/pipeline/components/data_preprocessing/rescaling/abstract_rescaling.py b/autosklearn/pipeline/components/data_preprocessing/rescaling/abstract_rescaling.py index dc9c9c60ac..2d57053cd3 100644 --- a/autosklearn/pipeline/components/data_preprocessing/rescaling/abstract_rescaling.py +++ b/autosklearn/pipeline/components/data_preprocessing/rescaling/abstract_rescaling.py @@ -19,27 +19,17 @@ def __init__( ) -> None: self.preprocessor: Optional[BaseEstimator] = None - def fit( - self, - X: PIPELINE_DATA_DTYPE, - y: Optional[PIPELINE_DATA_DTYPE] = None - ) -> 'AutoSklearnPreprocessingAlgorithm': - + def fit(self, X: PIPELINE_DATA_DTYPE, y: Optional[PIPELINE_DATA_DTYPE] = None + ) -> 'AutoSklearnPreprocessingAlgorithm': if self.preprocessor is None: raise NotFittedError() - self.preprocessor.fit(X) - return self def transform(self, X: PIPELINE_DATA_DTYPE) -> PIPELINE_DATA_DTYPE: - if self.preprocessor is None: - raise NotFittedError() - - transformed_X = self.preprocessor.transform(X) - - return transformed_X + raise NotImplementedError() + return self.preprocessor.transform(X) @staticmethod def get_hyperparameter_search_space(dataset_properties: Optional[DATASET_PROPERTIES_TYPE] = None diff --git a/autosklearn/pipeline/components/feature_preprocessing/kitchen_sinks.py b/autosklearn/pipeline/components/feature_preprocessing/kitchen_sinks.py index 12ff57c21d..00a641323a 100644 --- a/autosklearn/pipeline/components/feature_preprocessing/kitchen_sinks.py +++ b/autosklearn/pipeline/components/feature_preprocessing/kitchen_sinks.py @@ -1,6 +1,3 @@ -from typing import Optional, Union - -from numpy.random import RandomState from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter @@ -11,23 +8,13 @@ class RandomKitchenSinks(AutoSklearnPreprocessingAlgorithm): - def __init__( - self, - gamma: float, - n_components: int, - random_state: Optional[Union[int, RandomState]] = None - ) -> None: - """ - Parameters - ---------- + def __init__(self, gamma, n_components, random_state=None): + """ Parameters: gamma: float - Parameter of the rbf kernel to be approximated exp(-gamma * x^2) + Parameter of the rbf kernel to be approximated exp(-gamma * x^2) n_components: int - Number of components (output dimensionality) used to approximate the kernel - - random_state: Optional[int | RandomState] - The random state to pass to the underlying estimator + Number of components (output dimensionality) used to approximate the kernel """ self.gamma = gamma self.n_components = n_components @@ -40,10 +27,7 @@ def fit(self, X, Y=None): self.gamma = float(self.gamma) self.preprocessor = sklearn.kernel_approximation.RBFSampler( - gamma=self.gamma, - n_components=self.n_components, - random_state=self.random_state - ) + self.gamma, self.n_components, self.random_state) self.preprocessor.fit(X) return self diff --git a/autosklearn/pipeline/components/regression/adaboost.py b/autosklearn/pipeline/components/regression/adaboost.py index 2eb58ae2ea..9af0df2bdc 100644 --- a/autosklearn/pipeline/components/regression/adaboost.py +++ b/autosklearn/pipeline/components/regression/adaboost.py @@ -15,7 +15,7 @@ def __init__(self, n_estimators, learning_rate, loss, max_depth, random_state=No self.max_depth = max_depth self.estimator = None - def fit(self, X, y): + def fit(self, X, Y): import sklearn.ensemble import sklearn.tree @@ -32,11 +32,7 @@ def fit(self, X, y): loss=self.loss, random_state=self.random_state ) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - - self.estimator.fit(X, y) + self.estimator.fit(X, Y) return self def predict(self, X): diff --git a/autosklearn/pipeline/components/regression/ard_regression.py b/autosklearn/pipeline/components/regression/ard_regression.py index 46dcac5d93..dd642e6098 100644 --- a/autosklearn/pipeline/components/regression/ard_regression.py +++ b/autosklearn/pipeline/components/regression/ard_regression.py @@ -22,8 +22,8 @@ def __init__(self, n_iter, tol, alpha_1, alpha_2, lambda_1, lambda_2, self.threshold_lambda = threshold_lambda self.fit_intercept = fit_intercept - def fit(self, X, y): - from sklearn.linear_model import ARDRegression + def fit(self, X, Y): + import sklearn.linear_model self.n_iter = int(self.n_iter) self.tol = float(self.tol) @@ -34,25 +34,20 @@ def fit(self, X, y): self.threshold_lambda = float(self.threshold_lambda) self.fit_intercept = check_for_bool(self.fit_intercept) - self.estimator = ARDRegression( - n_iter=self.n_iter, - tol=self.tol, - alpha_1=self.alpha_1, - alpha_2=self.alpha_2, - lambda_1=self.lambda_1, - lambda_2=self.lambda_2, - compute_score=False, - threshold_lambda=self.threshold_lambda, - fit_intercept=True, - normalize=False, - copy_X=False, - verbose=False - ) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - - self.estimator.fit(X, y) + self.estimator = sklearn.linear_model.\ + ARDRegression(n_iter=self.n_iter, + tol=self.tol, + alpha_1=self.alpha_1, + alpha_2=self.alpha_2, + lambda_1=self.lambda_1, + lambda_2=self.lambda_2, + compute_score=False, + threshold_lambda=self.threshold_lambda, + fit_intercept=True, + normalize=False, + copy_X=False, + verbose=False) + self.estimator.fit(X, Y) return self def predict(self, X): diff --git a/autosklearn/pipeline/components/regression/decision_tree.py b/autosklearn/pipeline/components/regression/decision_tree.py index 5ecbd254be..f458fbb9a5 100644 --- a/autosklearn/pipeline/components/regression/decision_tree.py +++ b/autosklearn/pipeline/components/regression/decision_tree.py @@ -56,10 +56,6 @@ def fit(self, X, y, sample_weight=None): min_weight_fraction_leaf=self.min_weight_fraction_leaf, min_impurity_decrease=self.min_impurity_decrease, random_state=self.random_state) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - self.estimator.fit(X, y, sample_weight=sample_weight) return self diff --git a/autosklearn/pipeline/components/regression/extra_trees.py b/autosklearn/pipeline/components/regression/extra_trees.py index a676f0483d..9b55205372 100644 --- a/autosklearn/pipeline/components/regression/extra_trees.py +++ b/autosklearn/pipeline/components/regression/extra_trees.py @@ -95,10 +95,7 @@ def iterative_fit(self, X, y, n_iter=1, refit=False): self.estimator.n_estimators = min(self.estimator.n_estimators, self.n_estimators) - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - - self.estimator.fit(X, y) + self.estimator.fit(X, y,) return self diff --git a/autosklearn/pipeline/components/regression/gaussian_process.py b/autosklearn/pipeline/components/regression/gaussian_process.py index c587b13b0e..84a7fde238 100644 --- a/autosklearn/pipeline/components/regression/gaussian_process.py +++ b/autosklearn/pipeline/components/regression/gaussian_process.py @@ -10,8 +10,10 @@ def __init__(self, alpha, thetaL, thetaU, random_state=None): self.alpha = alpha self.thetaL = thetaL self.thetaU = thetaU + # We ignore it self.random_state = random_state self.estimator = None + self.scaler = None def fit(self, X, y): import sklearn.gaussian_process @@ -23,8 +25,7 @@ def fit(self, X, y): n_features = X.shape[1] kernel = sklearn.gaussian_process.kernels.RBF( length_scale=[1.0]*n_features, - length_scale_bounds=[(self.thetaL, self.thetaU)]*n_features - ) + length_scale_bounds=[(self.thetaL, self.thetaU)]*n_features) # Instanciate a Gaussian Process model self.estimator = sklearn.gaussian_process.GaussianProcessRegressor( @@ -34,14 +35,9 @@ def fit(self, X, y): alpha=self.alpha, copy_X_train=True, random_state=self.random_state, - normalize_y=True - ) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() + normalize_y=True) self.estimator.fit(X, y) - return self def predict(self, X): diff --git a/autosklearn/pipeline/components/regression/gradient_boosting.py b/autosklearn/pipeline/components/regression/gradient_boosting.py index ad57596b9a..731a0e0da1 100644 --- a/autosklearn/pipeline/components/regression/gradient_boosting.py +++ b/autosklearn/pipeline/components/regression/gradient_boosting.py @@ -48,7 +48,10 @@ def get_current_iter(self): return self.estimator.n_iter_ def iterative_fit(self, X, y, n_iter=2, refit=False): - """ Set n_iter=2 for the same reason as for SGD """ + + """ + Set n_iter=2 for the same reason as for SGD + """ import sklearn.ensemble from sklearn.experimental import enable_hist_gradient_boosting # noqa @@ -109,9 +112,6 @@ def iterative_fit(self, X, y, n_iter=2, refit=False): self.estimator.max_iter = min(self.estimator.max_iter, self.max_iter) - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - self.estimator.fit(X, y) if ( diff --git a/autosklearn/pipeline/components/regression/k_nearest_neighbors.py b/autosklearn/pipeline/components/regression/k_nearest_neighbors.py index e4943e2ca5..c8e92985ac 100644 --- a/autosklearn/pipeline/components/regression/k_nearest_neighbors.py +++ b/autosklearn/pipeline/components/regression/k_nearest_neighbors.py @@ -13,7 +13,7 @@ def __init__(self, n_neighbors, weights, p, random_state=None): self.p = p self.random_state = random_state - def fit(self, X, y): + def fit(self, X, Y): import sklearn.neighbors self.n_neighbors = int(self.n_neighbors) @@ -24,11 +24,7 @@ def fit(self, X, y): n_neighbors=self.n_neighbors, weights=self.weights, p=self.p) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - - self.estimator.fit(X, y) + self.estimator.fit(X, Y) return self def predict(self, X): diff --git a/autosklearn/pipeline/components/regression/liblinear_svr.py b/autosklearn/pipeline/components/regression/liblinear_svr.py index 73c1550ff3..043ef2ec82 100644 --- a/autosklearn/pipeline/components/regression/liblinear_svr.py +++ b/autosklearn/pipeline/components/regression/liblinear_svr.py @@ -23,7 +23,7 @@ def __init__(self, loss, epsilon, dual, tol, C, fit_intercept, self.random_state = random_state self.estimator = None - def fit(self, X, y): + def fit(self, X, Y): import sklearn.svm self.C = float(self.C) @@ -42,11 +42,7 @@ def fit(self, X, y): fit_intercept=self.fit_intercept, intercept_scaling=self.intercept_scaling, random_state=self.random_state) - - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - - self.estimator.fit(X, y) + self.estimator.fit(X, Y) return self def predict(self, X): diff --git a/autosklearn/pipeline/components/regression/libsvm_svr.py b/autosklearn/pipeline/components/regression/libsvm_svr.py index 6b6c70415c..6be08d87ad 100644 --- a/autosklearn/pipeline/components/regression/libsvm_svr.py +++ b/autosklearn/pipeline/components/regression/libsvm_svr.py @@ -2,10 +2,11 @@ import sys from ConfigSpace.configuration_space import ConfigurationSpace -from ConfigSpace.conditions import InCondition, EqualsCondition +from ConfigSpace.conditions import InCondition from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter, \ UnParametrizedHyperparameter + from autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm from autosklearn.pipeline.constants import DENSE, UNSIGNED_DATA, PREDICTIONS, SPARSE from autosklearn.util.common import check_for_bool, check_none @@ -28,7 +29,7 @@ def __init__(self, kernel, C, epsilon, tol, shrinking, gamma=0.1, self.random_state = random_state self.estimator = None - def fit(self, X, y): + def fit(self, X, Y): import sklearn.svm # Calculate the size of the kernel cache (in MB) for sklearn's LibSVM. The cache size is @@ -87,19 +88,9 @@ def fit(self, X, y): ) self.scaler = sklearn.preprocessing.StandardScaler(copy=True) - # Convert y to be at least 2d for the scaler - # [1,1,1] -> [[1], [1], [1]] - if y.ndim == 1: - y = y.reshape((-1, 1)) - - y_scaled = self.scaler.fit_transform(y) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if y_scaled.ndim == 2 and y_scaled.shape[1] == 1: - y_scaled = y_scaled.flatten() - - self.estimator.fit(X, y_scaled) - + self.scaler.fit(Y.reshape((-1, 1))) + Y_scaled = self.scaler.transform(Y.reshape((-1, 1))).ravel() + self.estimator.fit(X, Y_scaled) return self def predict(self, X): @@ -107,15 +98,8 @@ def predict(self, X): raise NotImplementedError if self.scaler is None: raise NotImplementedError - y_pred = self.estimator.predict(X) - - inverse = self.scaler.inverse_transform(y_pred) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if inverse.ndim == 2 and inverse.shape[1] == 1: - inverse = inverse.flatten() - - return inverse + Y_pred = self.estimator.predict(X) + return self.scaler.inverse_transform(Y_pred) @staticmethod def get_properties(dataset_properties=None): @@ -163,12 +147,13 @@ def get_hyperparameter_search_space(dataset_properties=None): cs.add_hyperparameters([C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, epsilon]) - degree_depends_on_poly = EqualsCondition(degree, kernel, "poly") + degree_depends_on_kernel = InCondition(child=degree, parent=kernel, + values=('poly', 'rbf', 'sigmoid')) gamma_depends_on_kernel = InCondition(child=gamma, parent=kernel, values=('poly', 'rbf')) coef0_depends_on_kernel = InCondition(child=coef0, parent=kernel, values=('poly', 'sigmoid')) - cs.add_conditions([degree_depends_on_poly, gamma_depends_on_kernel, + cs.add_conditions([degree_depends_on_kernel, gamma_depends_on_kernel, coef0_depends_on_kernel]) return cs diff --git a/autosklearn/pipeline/components/regression/mlp.py b/autosklearn/pipeline/components/regression/mlp.py index 8eec40a2cc..198cbb8356 100644 --- a/autosklearn/pipeline/components/regression/mlp.py +++ b/autosklearn/pipeline/components/regression/mlp.py @@ -137,36 +137,16 @@ def iterative_fit(self, X, y, n_iter=2, refit=False): # max_fun=self.max_fun ) self.scaler = sklearn.preprocessing.StandardScaler(copy=True) - - # Convert y to be at least 2d for the StandardScaler - # [1,1,1] -> [[1], [1], [1]] - if y.ndim == 1: - y = y.reshape((-1, 1)) - - self.scaler.fit(y) + self.scaler.fit(y.reshape((-1, 1))) else: new_max_iter = min(self.max_iter - self.estimator.n_iter_, n_iter) self.estimator.max_iter = new_max_iter - # Convert y to be at least 2d for the scaler - # [1,1,1] -> [[1], [1], [1]] - if y.ndim == 1: - y = y.reshape((-1, 1)) - - y_scaled = self.scaler.transform(y) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if y_scaled.ndim == 2 and y_scaled.shape[1] == 1: - y_scaled = y_scaled.flatten() - - self.estimator.fit(X, y_scaled) - - if ( - self.estimator.n_iter_ >= self.max_iter - or self.estimator._no_improvement_count > self.n_iter_no_change - ): + Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel() + self.estimator.fit(X, Y_scaled) + if self.estimator.n_iter_ >= self.max_iter or \ + self.estimator._no_improvement_count > self.n_iter_no_change: self._fully_fit = True - return self def configuration_fully_fitted(self): @@ -180,16 +160,8 @@ def configuration_fully_fitted(self): def predict(self, X): if self.estimator is None: raise NotImplementedError - - y_pred = self.estimator.predict(X) - - inverse = self.scaler.inverse_transform(y_pred) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if inverse.ndim == 2 and inverse.shape[1] == 1: - inverse = inverse.flatten() - - return inverse + Y_pred = self.estimator.predict(X) + return self.scaler.inverse_transform(Y_pred) @staticmethod def get_properties(dataset_properties=None): diff --git a/autosklearn/pipeline/components/regression/random_forest.py b/autosklearn/pipeline/components/regression/random_forest.py index eeaddb9e1a..054c283dc5 100644 --- a/autosklearn/pipeline/components/regression/random_forest.py +++ b/autosklearn/pipeline/components/regression/random_forest.py @@ -85,9 +85,6 @@ def iterative_fit(self, X, y, n_iter=1, refit=False): self.estimator.n_estimators = min(self.estimator.n_estimators, self.n_estimators) - if y.ndim == 2 and y.shape[1] == 1: - y = y.flatten() - self.estimator.fit(X, y) return self diff --git a/autosklearn/pipeline/components/regression/sgd.py b/autosklearn/pipeline/components/regression/sgd.py index 8b3e7dbd34..e3bbf2b12a 100644 --- a/autosklearn/pipeline/components/regression/sgd.py +++ b/autosklearn/pipeline/components/regression/sgd.py @@ -90,36 +90,17 @@ def iterative_fit(self, X, y, n_iter=2, refit=False): warm_start=True) self.scaler = sklearn.preprocessing.StandardScaler(copy=True) - - if y.ndim == 1: - y = y.reshape((-1, 1)) - - y_scaled = self.scaler.fit_transform(y) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if y_scaled.ndim == 2 and y_scaled.shape[1] == 1: - y_scaled = y_scaled.flatten() - - self.estimator.fit(X, y_scaled) + self.scaler.fit(y.reshape((-1, 1))) + Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel() + self.estimator.fit(X, Y_scaled) self.n_iter_ = self.estimator.n_iter_ else: self.estimator.max_iter += n_iter self.estimator.max_iter = min(self.estimator.max_iter, self.max_iter) - - # Convert y to be at least 2d for the scaler - # [1,1,1] -> [[1], [1], [1]] - if y.ndim == 1: - y = y.reshape((-1, 1)) - - y_scaled = self.scaler.transform(y) - - # Flatten: [[0], [0], [0]] -> [0, 0, 0] - if y_scaled.ndim == 2 and y_scaled.shape[1] == 1: - y_scaled = y_scaled.flatten() - + Y_scaled = self.scaler.transform(y.reshape((-1, 1))).ravel() self.estimator._validate_params() self.estimator._partial_fit( - X, y_scaled, + X, Y_scaled, alpha=self.estimator.alpha, C=1.0, loss=self.estimator.loss, diff --git a/autosklearn/py.typed b/autosklearn/py.typed deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/autosklearn/smbo.py b/autosklearn/smbo.py index 3cb823f2ff..dff29d84d0 100644 --- a/autosklearn/smbo.py +++ b/autosklearn/smbo.py @@ -1,4 +1,3 @@ -from typing import Dict, List, Optional import copy import json import logging @@ -232,8 +231,8 @@ def __init__(self, config_space, dataset_name, metadata_directory=None, resampling_strategy='holdout', resampling_strategy_args=None, - include: Optional[Dict[str, List[str]]] = None, - exclude: Optional[Dict[str, List[str]]] = None, + include=None, + exclude=None, disable_file_output=False, smac_scenario_args=None, get_smac_object_callback=None, @@ -436,7 +435,6 @@ def run_smbo(self): total_walltime_limit = self.total_walltime_limit - startup_time - 5 scenario_dict = { 'abort_on_first_run_crash': False, - 'save-results-instantly': True, 'cs': self.config_space, 'cutoff_time': self.func_eval_time_limit, 'deterministic': 'true', diff --git a/autosklearn/util/backend.py b/autosklearn/util/backend.py new file mode 100644 index 0000000000..a3265d3211 --- /dev/null +++ b/autosklearn/util/backend.py @@ -0,0 +1,425 @@ +import glob +import os +import pickle +import shutil +import tempfile +import time +import uuid +import warnings +from typing import Dict, List, Optional, Tuple, Union + +import numpy as np + +from sklearn.pipeline import Pipeline + +from autosklearn.data.abstract_data_manager import AbstractDataManager +from autosklearn.ensembles.abstract_ensemble import AbstractEnsemble +from autosklearn.util.logging_ import PicklableClientLogger, get_named_client_logger + + +__all__ = [ + 'Backend' +] + + +def create( + temporary_directory: str, + delete_tmp_folder_after_terminate: bool = True, +) -> 'Backend': + context = BackendContext(temporary_directory, + delete_tmp_folder_after_terminate, + ) + backend = Backend(context) + + return backend + + +def get_randomized_directory_name(temporary_directory: Optional[str] = None) -> str: + uuid_str = str(uuid.uuid1(clock_seq=os.getpid())) + + temporary_directory = ( + temporary_directory + if temporary_directory + else os.path.join( + tempfile.gettempdir(), + "autosklearn_tmp_{}".format( + uuid_str, + ), + ) + ) + + return temporary_directory + + +class BackendContext(object): + + def __init__(self, + temporary_directory: str, + delete_tmp_folder_after_terminate: bool, + ): + + self.delete_tmp_folder_after_terminate = delete_tmp_folder_after_terminate + # attributes to check that directories were created by autosklearn. + self._tmp_dir_created = False + + self._temporary_directory = ( + get_randomized_directory_name( + temporary_directory=temporary_directory, + ) + ) + # Auto-Sklearn logs through the use of a PicklableClientLogger + # For this reason we need a port to communicate with the server + # When the backend is created, this port is not available + # When the port is available in the main process, we + # call the setup_logger with this port and update self.logger + self.logger = None # type: Optional[PicklableClientLogger] + self.create_directories() + + def setup_logger(self, port: int) -> None: + self._logger = get_named_client_logger( + name=__name__, + port=port, + ) + + @property + def temporary_directory(self) -> str: + # make sure that tilde does not appear on the path. + return os.path.expanduser(os.path.expandvars(self._temporary_directory)) + + def create_directories(self) -> None: + # Exception is raised if self.temporary_directory already exists. + os.makedirs(self.temporary_directory) + self._tmp_dir_created = True + + def delete_directories(self, force: bool = True) -> None: + + if self.delete_tmp_folder_after_terminate or force: + if self._tmp_dir_created is False: + raise ValueError("Failed to delete tmp dir: % s because auto-sklearn did not " + "create it. Please make sure that the specified tmp dir does not " + "exist when instantiating auto-sklearn." + % self.temporary_directory) + try: + shutil.rmtree(self.temporary_directory) + except Exception: + try: + if self._logger is not None: + self._logger.warning( + "Could not delete tmp dir: %s" % self.temporary_directory) + else: + print("Could not delete tmp dir: %s" % self.temporary_directory) + except Exception: + print("Could not delete tmp dir: %s" % self.temporary_directory) + + +class Backend(object): + """Utility class to load and save all objects to be persisted. + + These are: + * start time of auto-sklearn + * true targets of the ensemble + """ + + def __init__(self, context: BackendContext): + # When the backend is created, this port is not available + # When the port is available in the main process, we + # call the setup_logger with this port and update self.logger + self.logger = None # type: Optional[PicklableClientLogger] + self.context = context + + # Create the temporary directory if it does not yet exist + try: + os.makedirs(self.temporary_directory) + except Exception: + pass + + self.internals_directory = os.path.join(self.temporary_directory, ".auto-sklearn") + self._make_internals_directory() + + def setup_logger(self, port: int) -> None: + self.logger = get_named_client_logger( + name=__name__, + port=port, + ) + self.context.setup_logger(port) + + @property + def temporary_directory(self) -> str: + return self.context.temporary_directory + + def _make_internals_directory(self) -> None: + try: + os.makedirs(self.internals_directory) + except Exception as e: + if self.logger is not None: + self.logger.debug("_make_internals_directory: %s" % e) + try: + os.makedirs(self.get_runs_directory()) + except Exception as e: + if self.logger is not None: + self.logger.debug("_make_internals_directory: %s" % e) + + def _get_start_time_filename(self, seed: Union[str, int]) -> str: + if isinstance(seed, str): + seed = int(seed) + return os.path.join(self.internals_directory, "start_time_%d" % seed) + + def save_start_time(self, seed: str) -> str: + self._make_internals_directory() + start_time = time.time() + + filepath = self._get_start_time_filename(seed) + + if not isinstance(start_time, float): + raise ValueError("Start time must be a float, but is %s." % type(start_time)) + + if os.path.exists(filepath): + raise ValueError( + "{filepath} already exist. Different seeds should be provided for different jobs." + ) + + with tempfile.NamedTemporaryFile('w', dir=os.path.dirname(filepath), delete=False) as fh: + fh.write(str(start_time)) + tempname = fh.name + os.rename(tempname, filepath) + + return filepath + + def load_start_time(self, seed: int) -> float: + with open(self._get_start_time_filename(seed), 'r') as fh: + start_time = float(fh.read()) + return start_time + + def get_smac_output_directory(self) -> str: + return os.path.join(self.temporary_directory, 'smac3-output') + + def get_smac_output_directory_for_run(self, seed: int) -> str: + return os.path.join( + self.temporary_directory, + 'smac3-output', + 'run_%d' % seed + ) + + def _get_targets_ensemble_filename(self) -> str: + return os.path.join(self.internals_directory, + "true_targets_ensemble.npy") + + def save_targets_ensemble(self, targets: np.ndarray) -> str: + self._make_internals_directory() + if not isinstance(targets, np.ndarray): + raise ValueError('Targets must be of type np.ndarray, but is %s' % + type(targets)) + + filepath = self._get_targets_ensemble_filename() + + # Try to open the file without locking it, this will reduce the + # number of times where we erroneously keep a lock on the ensemble + # targets file although the process already was killed + try: + existing_targets = np.load(filepath, allow_pickle=True) + if existing_targets.shape[0] > targets.shape[0] or \ + (existing_targets.shape == targets.shape and + np.allclose(existing_targets, targets)): + + return filepath + except Exception: + pass + + with tempfile.NamedTemporaryFile('wb', dir=os.path.dirname( + filepath), delete=False) as fh_w: + np.save(fh_w, targets.astype(np.float32)) + tempname = fh_w.name + + os.rename(tempname, filepath) + + return filepath + + def load_targets_ensemble(self) -> np.ndarray: + filepath = self._get_targets_ensemble_filename() + + with open(filepath, 'rb') as fh: + targets = np.load(fh, allow_pickle=True) + + return targets + + def _get_datamanager_pickle_filename(self) -> str: + return os.path.join(self.internals_directory, 'datamanager.pkl') + + def save_datamanager(self, datamanager: AbstractDataManager) -> str: + self._make_internals_directory() + filepath = self._get_datamanager_pickle_filename() + + with tempfile.NamedTemporaryFile('wb', dir=os.path.dirname( + filepath), delete=False) as fh: + pickle.dump(datamanager, fh, -1) + tempname = fh.name + os.rename(tempname, filepath) + + return filepath + + def load_datamanager(self) -> AbstractDataManager: + filepath = self._get_datamanager_pickle_filename() + with open(filepath, 'rb') as fh: + return pickle.load(fh) + + def get_runs_directory(self) -> str: + return os.path.join(self.internals_directory, 'runs') + + def get_numrun_directory(self, seed: int, num_run: int, budget: float) -> str: + return os.path.join(self.internals_directory, 'runs', '%d_%d_%s' % (seed, num_run, budget)) + + def get_model_filename(self, seed: int, idx: int, budget: float) -> str: + return '%s.%s.%s.model' % (seed, idx, budget) + + def get_cv_model_filename(self, seed: int, idx: int, budget: float) -> str: + return '%s.%s.%s.cv_model' % (seed, idx, budget) + + def list_all_models(self, seed: int) -> List[str]: + runs_directory = self.get_runs_directory() + model_files = glob.glob( + os.path.join(glob.escape(runs_directory), '%d_*' % seed, '%s.*.*.model' % seed) + ) + return model_files + + def load_models_by_identifiers(self, identifiers: List[Tuple[int, int, float]] + ) -> Dict: + models = dict() + + for identifier in identifiers: + seed, idx, budget = identifier + models[identifier] = self.load_model_by_seed_and_id_and_budget( + seed, idx, budget) + + return models + + def load_model_by_seed_and_id_and_budget(self, seed: int, + idx: int, + budget: float + ) -> Pipeline: + model_directory = self.get_numrun_directory(seed, idx, budget) + + model_file_name = '%s.%s.%s.model' % (seed, idx, budget) + model_file_path = os.path.join(model_directory, model_file_name) + with open(model_file_path, 'rb') as fh: + return pickle.load(fh) + + def load_cv_models_by_identifiers(self, identifiers: List[Tuple[int, int, float]] + ) -> Dict: + models = dict() + + for identifier in identifiers: + seed, idx, budget = identifier + models[identifier] = self.load_cv_model_by_seed_and_id_and_budget( + seed, idx, budget) + + return models + + def load_cv_model_by_seed_and_id_and_budget(self, + seed: int, + idx: int, + budget: float + ) -> Pipeline: + model_directory = self.get_numrun_directory(seed, idx, budget) + + model_file_name = '%s.%s.%s.cv_model' % (seed, idx, budget) + model_file_path = os.path.join(model_directory, model_file_name) + with open(model_file_path, 'rb') as fh: + return pickle.load(fh) + + def save_numrun_to_dir( + self, seed: int, idx: int, budget: float, model: Optional[Pipeline], + cv_model: Optional[Pipeline], ensemble_predictions: Optional[np.ndarray], + valid_predictions: Optional[np.ndarray], test_predictions: Optional[np.ndarray], + ) -> None: + runs_directory = self.get_runs_directory() + tmpdir = tempfile.mkdtemp(dir=runs_directory) + if model is not None: + file_path = os.path.join(tmpdir, self.get_model_filename(seed, idx, budget)) + with open(file_path, 'wb') as fh: + pickle.dump(model, fh, -1) + + if cv_model is not None: + file_path = os.path.join(tmpdir, self.get_cv_model_filename(seed, idx, budget)) + with open(file_path, 'wb') as fh: + pickle.dump(cv_model, fh, -1) + + for preds, subset in ( + (ensemble_predictions, 'ensemble'), + (valid_predictions, 'valid'), + (test_predictions, 'test') + ): + if preds is not None: + file_path = os.path.join( + tmpdir, + self.get_prediction_filename(subset, seed, idx, budget) + ) + with open(file_path, 'wb') as fh: + pickle.dump(preds.astype(np.float32), fh, -1) + try: + os.rename(tmpdir, self.get_numrun_directory(seed, idx, budget)) + except OSError: + if os.path.exists(self.get_numrun_directory(seed, idx, budget)): + os.rename(self.get_numrun_directory(seed, idx, budget), + os.path.join(runs_directory, tmpdir + '.old')) + os.rename(tmpdir, self.get_numrun_directory(seed, idx, budget)) + shutil.rmtree(os.path.join(runs_directory, tmpdir + '.old')) + + def get_ensemble_dir(self) -> str: + return os.path.join(self.internals_directory, 'ensembles') + + def load_ensemble(self, seed: int) -> Optional[AbstractEnsemble]: + ensemble_dir = self.get_ensemble_dir() + + if not os.path.exists(ensemble_dir): + if self.logger is not None: + self.logger.warning('Directory %s does not exist' % ensemble_dir) + else: + warnings.warn('Directory %s does not exist' % ensemble_dir) + return None + + if seed >= 0: + indices_files = glob.glob( + os.path.join(glob.escape(ensemble_dir), '%s.*.ensemble' % seed) + ) + indices_files.sort() + else: + indices_files = os.listdir(ensemble_dir) + indices_files = [os.path.join(ensemble_dir, f) for f in indices_files] + indices_files.sort(key=lambda f: time.ctime(os.path.getmtime(f))) + + with open(indices_files[-1], 'rb') as fh: + ensemble_members_run_numbers = pickle.load(fh) + + return ensemble_members_run_numbers + + def save_ensemble(self, ensemble: AbstractEnsemble, idx: int, seed: int) -> None: + try: + os.makedirs(self.get_ensemble_dir()) + except Exception: + pass + + filepath = os.path.join( + self.get_ensemble_dir(), + '%s.%s.ensemble' % (str(seed), str(idx).zfill(10)) + ) + with tempfile.NamedTemporaryFile('wb', dir=os.path.dirname( + filepath), delete=False) as fh: + pickle.dump(ensemble, fh) + tempname = fh.name + os.rename(tempname, filepath) + + def get_prediction_filename(self, subset: str, + automl_seed: Union[str, int], + idx: int, + budget: float + ) -> str: + return 'predictions_%s_%s_%s_%s.npy' % (subset, automl_seed, idx, budget) + + def write_txt_file(self, filepath: str, data: str, name: str) -> None: + with tempfile.NamedTemporaryFile('w', dir=os.path.dirname( + filepath), delete=False) as fh: + fh.write(data) + tempname = fh.name + os.rename(tempname, filepath) + if self.logger is not None: + self.logger.debug('Created %s file %s' % (name, filepath)) diff --git a/autosklearn/util/data.py b/autosklearn/util/data.py index 288485f1cc..b344dc50bd 100644 --- a/autosklearn/util/data.py +++ b/autosklearn/util/data.py @@ -53,7 +53,7 @@ def convert_to_bin(Ycont: List, nval: int, verbose: bool = True) -> List: Ybin = [[0] * nval for x in range(len(Ycont))] for i in range(len(Ybin)): line = Ybin[i] - line[int(Ycont[i])] = 1 + line[np.int(Ycont[i])] = 1 Ybin[i] = line return Ybin diff --git a/autosklearn/util/logging.yaml b/autosklearn/util/logging.yaml index 046778d0e6..8c8bad3243 100644 --- a/autosklearn/util/logging.yaml +++ b/autosklearn/util/logging.yaml @@ -33,7 +33,7 @@ loggers: level: DEBUG handlers: [file_handler] - autosklearn.automl_common.utils.backend: + autosklearn.util.backend: level: DEBUG handlers: [file_handler] propagate: no diff --git a/autosklearn/util/pipeline.py b/autosklearn/util/pipeline.py index c1f5a2ca23..4a75d479d3 100755 --- a/autosklearn/util/pipeline.py +++ b/autosklearn/util/pipeline.py @@ -1,9 +1,9 @@ # -*- encoding: utf-8 -*- -from typing import Any, Dict, List, Optional, Union +from typing import Any, Dict, List, Optional from ConfigSpace.configuration_space import ConfigurationSpace -import numpy as np +from sklearn.pipeline import Pipeline from autosklearn.constants import ( BINARY_CLASSIFICATION, @@ -16,69 +16,27 @@ from autosklearn.pipeline.regression import SimpleRegressionPipeline -__all__ = ['get_configuration_space'] +__all__ = [ + 'get_configuration_space', + 'get_class', +] -def get_configuration_space( - info: Dict[str, Any], - include: Optional[Dict[str, List[str]]] = None, - exclude: Optional[Dict[str, List[str]]] = None, - random_state: Optional[Union[int, np.random.RandomState]] = None -) -> ConfigurationSpace: - """Get the configuration of a pipeline given some dataset info +def get_configuration_space(info: Dict[str, Any], + include: Optional[Dict[str, List[str]]] = None, + exclude: Optional[Dict[str, List[str]]] = None, + ) -> ConfigurationSpace: - Parameters - ---------- - info: Dict[str, Any] - Information about the dataset - - include: Optional[Dict[str, List[str]]] = None - A dictionary of what components to include for each pipeline step - - exclude: Optional[Dict[str, List[str]]] = None - A dictionary of what components to exclude for each pipeline step - - random_state: Optional[Union[int, np.random.Randomstate]] = None - The random state to use for seeding the ConfigSpace - - Returns - ------- - ConfigurationSpace - The configuration space for the pipeline - """ if info['task'] in REGRESSION_TASKS: - return _get_regression_configuration_space(info, include, exclude, random_state) + return _get_regression_configuration_space(info, include, exclude) else: - return _get_classification_configuration_space(info, include, exclude, random_state) - + return _get_classification_configuration_space(info, include, exclude) -def _get_regression_configuration_space( - info: Dict[str, Any], - include: Optional[Dict[str, List[str]]], - exclude: Optional[Dict[str, List[str]]], - random_state: Optional[Union[int, np.random.RandomState]] = None -) -> ConfigurationSpace: - """Get the configuration of a regression pipeline given some dataset info - Parameters - ---------- - info: Dict[str, Any] - Information about the dataset - - include: Optional[Dict[str, List[str]]] = None - A dictionary of what components to include for each pipeline step - - exclude: Optional[Dict[str, List[str]]] = None - A dictionary of what components to exclude for each pipeline step - - random_state: Optional[Union[int, np.random.Randomstate]] = None - The random state to use for seeding the ConfigSpace - - Returns - ------- - ConfigurationSpace - The configuration space for the regression pipeline - """ +def _get_regression_configuration_space(info: Dict[str, Any], + include: Optional[Dict[str, List[str]]], + exclude: Optional[Dict[str, List[str]]] + ) -> ConfigurationSpace: task_type = info['task'] sparse = False multioutput = False @@ -96,39 +54,15 @@ def _get_regression_configuration_space( configuration_space = SimpleRegressionPipeline( dataset_properties=dataset_properties, include=include, - exclude=exclude, - random_state=random_state + exclude=exclude ).get_hyperparameter_search_space() return configuration_space -def _get_classification_configuration_space( - info: Dict[str, Any], - include: Optional[Dict[str, List[str]]], - exclude: Optional[Dict[str, List[str]]], - random_state: Optional[Union[int, np.random.RandomState]] = None -) -> ConfigurationSpace: - """Get the configuration of a classification pipeline given some dataset info - - Parameters - ---------- - info: Dict[str, Any] - Information about the dataset - - include: Optional[Dict[str, List[str]]] = None - A dictionary of what components to include for each pipeline step - - exclude: Optional[Dict[str, List[str]]] = None - A dictionary of what components to exclude for each pipeline step - - random_state: Optional[Union[int, np.random.Randomstate]] = None - The random state to use for seeding the ConfigSpace - - Returns - ------- - ConfigurationSpace - The configuration space for the classification pipeline - """ +def _get_classification_configuration_space(info: Dict[str, Any], + include: Optional[Dict[str, List[str]]], + exclude: Optional[Dict[str, List[str]]] + ) -> ConfigurationSpace: task_type = info['task'] multilabel = False @@ -153,7 +87,12 @@ def _get_classification_configuration_space( return SimpleClassificationPipeline( dataset_properties=dataset_properties, - include=include, - exclude=exclude, - random_state=random_state - ).get_hyperparameter_search_space() + include=include, exclude=exclude).\ + get_hyperparameter_search_space() + + +def get_class(info: Dict[str, Any]) -> Pipeline: + if info['task'] in REGRESSION_TASKS: + return SimpleRegressionPipeline + else: + return SimpleClassificationPipeline diff --git a/doc/Makefile b/doc/Makefile index 24165e787b..3683cf45a8 100644 --- a/doc/Makefile +++ b/doc/Makefile @@ -60,7 +60,7 @@ html: @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." html-noexamples: - SPHINX_GALLERY_PLOT=False $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(SOURCEDIR) $(BUILDDIR)/html + $(SPHINXBUILD) -D plot_gallery=0 -b html $(ALLSPHINXOPTS) $(SOURCEDIR) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." @@ -167,7 +167,7 @@ changes: @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: - SPHINX_GALLERY_PLOT=False $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck + $(SPHINXBUILD) -D plot_gallery=0 -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." diff --git a/doc/conf.py b/doc/conf.py index 5d114b3550..2da16696f1 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -43,7 +43,6 @@ 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx_gallery.gen_gallery', 'sphinx.ext.autosectionlabel', - 'sphinx_toolbox.collapse', # sphinx.ext.autosexctionlabel raises duplicate label warnings # because same section headers are used multiple times throughout # the documentation. @@ -68,22 +67,6 @@ if "dev" in autosklearn.__version__: binder_branch = "development" -# Getting issues with the `-D plot_gallery=0` for sphinx gallery, this is a workaround -# We do this by setting an evironment variable we check and modifying the python config -# object. -# We have this extra processing as it enters as a raw string and we need a boolean value -gallery_env_var ="SPHINX_GALLERY_PLOT" - -sphinx_plot_gallery_flag = True -if gallery_env_var in os.environ: - value = os.environ[gallery_env_var] - if value in ["False", "false", "0"]: - sphinx_plot_gallery_flag = False - elif value in ["True", "true", "1"]: - sphinx_plot_gallery_flag = True - else: - raise ValueError(f'Env variable {gallery_env_var} must be set to "false" or "true"') - sphinx_gallery_conf = { # path to the examples 'examples_dirs': '../examples', @@ -94,7 +77,6 @@ #'reference_url': { # 'autosklearn': None #}, - 'plot_gallery': sphinx_plot_gallery_flag, 'backreferences_dir': None, 'filename_pattern': 'example.*.py$', 'ignore_pattern': r'custom_metrics\.py|__init__\.py|example_parallel_manual_spawning_python.py', diff --git a/doc/faq.rst b/doc/faq.rst index 439e5c9be3..d562eadc06 100644 --- a/doc/faq.rst +++ b/doc/faq.rst @@ -6,518 +6,267 @@ FAQ === -General -======= +Issues +====== -.. collapse:: Where can I find examples on how to use auto-sklearn? +Auto-sklearn is extremely memory hungry in a sequential setting +--------------------------------------------------------------- - We provide examples on using *auto-sklearn* for multiple use cases ranging from - simple classification to advanced uses such as feature importance, parallel runs - and customization. They can be found in the :ref:`sphx_glr_examples`. +Auto-sklearn can appear very memory hungry (i.e. requiring a lot of memory for small datasets) due +to the use of ``fork`` for creating new processes when running in sequential manner (if this +happens in a parallel setting or if you pass your own dask client this is due to a different +issue, see the other issues below). -.. collapse:: What type of tasks can auto-sklearn tackle? +Let's go into some more detail and discuss how to fix it: +Auto-sklearn executes each machine learning algorithm in its own process to be able to apply a +memory limit and a time limit. To start such a process, Python gives three options: ``fork``, +``forkserver`` and ``spawn``. The default ``fork`` copies the whole process memory into the +subprocess. If the main process already uses 1.5GB of main memory and we apply a 3GB memory +limit to Auto-sklearn, executing a machine learning pipeline is limited to use at most 1.5GB. +We would have loved to use ``forkserver`` or ``spawn`` as the default option instead, which both +copy only relevant data into the subprocess and thereby alleaviate the issue of eating up a lot +of your main memory +(and also do not suffer from potential deadlocks as ``fork`` does, see +`here `_), +but they have the downside that code must be guarded by ``if __name__ == "__main__"`` or executed +in a notebook, and we decided that we do not want to require this by default. - *auto-sklearn* can accept targets for the following tasks (more details on `Sklearn algorithms `_): +There are now two possible solutions: - * Binary Classification - * Multiclass Classification - * Multilabel Classification - * Regression - * Multioutput Regression +1. Use Auto-sklearn in parallel: if you use Auto-sklean in parallel, it defaults to ``forkserver`` + as the parallelization mechanism itself requires Auto-sklearn the code to be guarded. Please + find more information on how to do this in the following two examples: - You can provide feature and target training pairs (X_train/y_train) to *auto-sklearn* to fit an - ensemble of pipelines as described in the next section. This X_train/y_train dataset must belong - to one of the supported formats: np.ndarray, pd.DataFrame, scipy.sparse.csr_matrix and python lists. - Optionally, you can measure the ability of this fitted model to generalize to unseen data by - providing an optional testing pair (X_test/Y_test). For further details, please refer to the - Example :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`. - Supported formats for these training and testing pairs are: np.ndarray, - pd.DataFrame, scipy.sparse.csr_matrix and python lists. + 1. :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` + 2. :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` - If your data contains categorical values (in the features or targets), autosklearn will automatically encode your - data using a `sklearn.preprocessing.LabelEncoder `_ - for unidimensional data and a `sklearn.preprocessing.OrdinalEncoder `_ - for multidimensional data. + .. note:: - Regarding the features, there are two methods to guide *auto-sklearn* to properly encode categorical columns: + This requires all code to be guarded by ``if __name__ == "__main__"``. - * Providing a X_train/X_test numpy array with the optional flag feat_type. For further details, you - can check the Example :ref:`sphx_glr_examples_40_advanced_example_feature_types.py`. - * You can provide a pandas DataFrame, with properly formatted columns. If a column has numerical - dtype, *auto-sklearn* will not encode it and it will be passed directly to scikit-learn. If the - column has a categorical/boolean class, it will be encoded. If the column is of any other type - (Object or Timeseries), an error will be raised. For further details on how to properly encode - your data, you can check the Pandas Example - `Working with categorical data `_). - If you are working with time series, it is recommended that you follow this approach - `Working with time data `_. +2. Pass a `dask client `_. If the user passes + a dask client, Auto-sklearn can no longer assume that it runs in sequential mode and will use + a ``forkserver`` to start new processes. - Regarding the targets (y_train/y_test), if the task involves a classification problem, such features will be - automatically encoded. It is recommended to provide both y_train and y_test during fit, so that a common encoding - is created between these splits (if only y_train is provided during fit, the categorical encoder will not be able - to handle new classes that are exclusive to y_test). If the task is regression, no encoding happens on the - targets. + .. note:: -.. collapse:: Where can I find slides and notebooks from talks and tutorials? + This requires all code to be guarded by ``if __name__ == "__main__"``. - We provide resources for talks, tutorials and presentations on *auto-sklearn* under `auto-sklearn-talks `_ +We therefore suggest using one of the above settings by default. -.. collapse:: How should I cite auto-sklearn in a scientific publication? +Auto-sklearn is extremely memory hungry in a parallel setting +------------------------------------------------------------- - If you've used auto-sklearn in scientific publications, we would appreciate citations. +When running Auto-sklearn in a parallel setting it starts new processes for evaluating machine +learning models using the ``forkserver`` mechanism. Code that is in the main script and that is +not guarded by ``if __name__ == "__main__"`` will be executed for each subprocess. If, for example, +you are loading your dataset outside of the guarded code, your dataset will be loaded for each +evaluation of a machine learning algorithm and thus blocking your RAM. - .. code-block:: +We therefore suggest moving all code inside functions or the main block. - @inproceedings{feurer-neurips15a, - title = {Efficient and Robust Automated Machine Learning}, - author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina Springenberg, Jost and Blum, Manuel and Hutter, Frank}, - booktitle = {Advances in Neural Information Processing Systems 28 (2015)}, - pages = {2962--2970}, - year = {2015} - } +Auto-sklearn crashes with a segmentation fault +---------------------------------------------- - Or this, if you've used auto-sklearn 2.0 in your work: +Please make sure that you have read and followed the :ref:`installation` section! In case +everything is set up correctly, this is most likely due to the dependency +`pyrfr `_ not being compiled correctly. If this is the +case please execute: - .. code-block:: +.. code:: python - @article{feurer-arxiv20a, - title = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning}, - author = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank}, - booktitle = {arXiv:2007.04074 [cs.LG]}, - year = {2020} - } + import pyrfr.regression as reg + data = reg.default_data_container(64) -.. collapse:: I want to contribute. What can I do? +If this fails, the pyrfr dependency is most likely not compiled correctly. We advice you to do the +following: - This sounds great. Please have a look at our `contribution guide `_ +1. Check if you can use a pre-compiled version of the pyrfr to avoid compiling it yourself. We + provide pre-compiled versions of the pyrfr on `pypi `_. +2. Check if the dependencies specified under :ref:`installation` are correctly installed, + especially that you have ``swig`` and a ``C++`` compiler. +3. If you are not yet using Conda, consider using it; it simplifies installation of the correct + dependencies. +4. Install correct build dependencies before installing the pyrfr, you can check the following + github issues for suggestions: `1025 `_, + `856 `_ -.. collapse:: I have a question which is not answered here. What should I do? - - Thanks a lot. We regularly update this section with questions from our issue tracker. So please use the - `issue tracker `_ - -Resource Management -=================== - -.. collapse:: How should I set the time and memory limits? - - While *auto-sklearn* alleviates manual hyperparameter tuning, the user still - has to set memory and time limits. For most datasets a memory limit of 3GB or - 6GB as found on most modern computers is sufficient. For the time limits it - is harder to give clear guidelines. If possible, a good default is a total - time limit of one day, and a time limit of 30 minutes for a single run. - - Further guidelines can be found in - `auto-sklearn/issues/142 `_. - -.. collapse:: How many CPU cores does auto-sklearn use by default? - - By default, *auto-sklearn* uses **one core**. See also :ref:`parallel` on how to configure this. - -.. collapse:: How can I run auto-sklearn in parallel? - - Nevertheless, *auto-sklearn* also supports parallel Bayesian optimization via the use of - `Dask.distributed `_. By providing the arguments ``n_jobs`` - to the estimator construction, one can control the number of cores available to *auto-sklearn* - (As shown in the Example :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py`). - Distributed processes are also supported by providing a custom client object to *auto-sklearn* like - in the Example: :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`. When - multiple cores are - available, *auto-sklearn* will create a worker per core, and use the available workers to both search - for better machine learning models as well as building an ensemble with them until the time resource - is exhausted. - - **Note:** *auto-sklearn* requires all workers to have access to a shared file system for storing training data and models. - - *auto-sklearn* employs `threadpoolctl `_ to control the number of threads employed by scientific libraries like numpy or scikit-learn. This is done exclusively during the building procedure of models, not during inference. In particular, *auto-sklearn* allows each pipeline to use at most 1 thread during training. At predicting and scoring time this limitation is not enforced by *auto-sklearn*. You can control the number of resources - employed by the pipelines by setting the following variables in your environment, prior to running *auto-sklearn*: - - .. code-block:: shell-session - - $ export OPENBLAS_NUM_THREADS=1 - $ export MKL_NUM_THREADS=1 - $ export OMP_NUM_THREADS=1 - - For further information about how scikit-learn handles multiprocessing, please check the `Parallelism, resource management, and configuration `_ documentation from the library. - - -.. collapse:: Auto-sklearn is extremely memory hungry in a sequential setting - - Auto-sklearn can appear very memory hungry (i.e. requiring a lot of memory for small datasets) due - to the use of ``fork`` for creating new processes when running in sequential manner (if this - happens in a parallel setting or if you pass your own dask client this is due to a different - issue, see the other issues below). - - Let's go into some more detail and discuss how to fix it: - Auto-sklearn executes each machine learning algorithm in its own process to be able to apply a - memory limit and a time limit. To start such a process, Python gives three options: ``fork``, - ``forkserver`` and ``spawn``. The default ``fork`` copies the whole process memory into the - subprocess. If the main process already uses 1.5GB of main memory and we apply a 3GB memory - limit to Auto-sklearn, executing a machine learning pipeline is limited to use at most 1.5GB. - We would have loved to use ``forkserver`` or ``spawn`` as the default option instead, which both - copy only relevant data into the subprocess and thereby alleaviate the issue of eating up a lot - of your main memory - (and also do not suffer from potential deadlocks as ``fork`` does, see - `here `_), - but they have the downside that code must be guarded by ``if __name__ == "__main__"`` or executed - in a notebook, and we decided that we do not want to require this by default. - - There are now two possible solutions: - - 1. Use Auto-sklearn in parallel: if you use Auto-sklean in parallel, it defaults to ``forkserver`` - as the parallelization mechanism itself requires Auto-sklearn the code to be guarded. Please - find more information on how to do this in the following two examples: - - 1. :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py` - 2. :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py` - - .. note:: - - This requires all code to be guarded by ``if __name__ == "__main__"``. - - 2. Pass a `dask client `_. If the user passes - a dask client, Auto-sklearn can no longer assume that it runs in sequential mode and will use - a ``forkserver`` to start new processes. - - .. note:: - - This requires all code to be guarded by ``if __name__ == "__main__"``. - - We therefore suggest using one of the above settings by default. - -.. collapse:: Auto-sklearn is extremely memory hungry in a parallel setting - - When running Auto-sklearn in a parallel setting it starts new processes for evaluating machine - learning models using the ``forkserver`` mechanism. Code that is in the main script and that is - not guarded by ``if __name__ == "__main__"`` will be executed for each subprocess. If, for example, - you are loading your dataset outside of the guarded code, your dataset will be loaded for each - evaluation of a machine learning algorithm and thus blocking your RAM. - - We therefore suggest moving all code inside functions or the main block. - -.. collapse:: Auto-sklearn crashes with a segmentation fault - - Please make sure that you have read and followed the :ref:`installation` section! In case - everything is set up correctly, this is most likely due to the dependency - `pyrfr `_ not being compiled correctly. If this is the - case please execute: - - .. code:: python - - import pyrfr.regression as reg - data = reg.default_data_container(64) - - If this fails, the pyrfr dependency is most likely not compiled correctly. We advice you to do the - following: - - 1. Check if you can use a pre-compiled version of the pyrfr to avoid compiling it yourself. We - provide pre-compiled versions of the pyrfr on `pypi `_. - 2. Check if the dependencies specified under :ref:`installation` are correctly installed, - especially that you have ``swig`` and a ``C++`` compiler. - 3. If you are not yet using Conda, consider using it; it simplifies installation of the correct - dependencies. - 4. Install correct build dependencies before installing the pyrfr, you can check the following - github issues for suggestions: `1025 `_, - `856 `_ - -Results, Log Files and Output -============================= - -.. collapse:: How can I get an overview of the run statistics? - - ``sprint_statistics()`` is a method that prints the name of the dataset, the metric used, and the best validation score - obtained by running *auto-sklearn*. It additionally prints the number of both successful and unsuccessful - algorithm runs. - -.. collapse:: What was the performance over time? - - ``performance_over_time_`` returns a DataFrame containing the models performance over time data, which can - be used for plotting directly (Here is an example: :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`). - - .. code:: python - - automl.performance_over_time_.plot( - x='Timestamp', - kind='line', - legend=True, - title='Auto-sklearn accuracy over time', - grid=True, - ) - plt.show() - -.. collapse:: Which models were evaluated? - - You can see all models evaluated using :meth:`automl.leaderboard(ensemble_only=False) `. - -.. collapse:: Which models are in the final ensemble? - - Use either :meth:`automl.leaderboard(ensemble_only=True) ` or ``automl.show_models()`` - -.. collapse:: Is there more data I can look at? - - ``cv_results_`` returns a dict with keys as column headers and values as columns, that can be imported into - a pandas DataFrame, e.g. ``df = pd.DataFrame(automl.cv_results_)`` - -.. collapse:: Where does Auto-sklearn output files by default? - - *Auto-sklearn* heavily uses the hard drive to store temporary data, models and log files which can - be used to inspect the behavior of Auto-sklearn. Each run of Auto-sklearn requires - its own directory. If not provided by the user, *Auto-sklearn* requests a temporary directory from - Python, which by default is located under ``/tmp`` and starts with ``autosklearn_tmp_`` followed - by a random string. By default, this directory is deleted when the *Auto-sklearn* object is - finished fitting. If you want to keep these files you can pass the argument - ``delete_tmp_folder_after_terminate=True`` to the *Auto-sklearn* object. - - The :class:`autosklearn.classification.AutoSklearnClassifier` and all other *auto-sklearn* - estimators accept the argument ``tmp_folder`` which change where such output is written to. - - There's an additional argument ``output_directory`` which can be passed to *Auto-sklearn* and it - controls where test predictions of the ensemble are stored if the test set is passed to ``fit()``. - -.. collapse:: Auto-sklearn's logfiles eat up all my disk space. What can I do? - - *Auto-sklearn* heavily uses the hard drive to store temporary data, models and log files which can - be used to inspect the behavior of Auto-sklearn. By default, *Auto-sklearn* stores 50 - models and their predictions on the validation data (which is a subset of the training data in - case of holdout and the full training data in case of cross-validation) on the hard drive. - Redundant models and their predictions (i.e. when we have more than 50 models) are removed - everytime the ensemble builder finishes an iteration, which means that the number of models stored - on disk can temporarily be higher if a model is output while the ensemble builder is running. - - One can therefore change the number of models that will be stored on disk by passing an integer - for the argument ``max_models_on_disc`` to *Auto-sklearn*, for example reduce the number of models - stored on disk if you have space issues. - - As the number of models is only an indicator of the disk space used it is also possible to pass - the memory in MB the models are allowed to use as a ``float`` (also via the ``max_models_on_disc`` - arguments). As above, this is rather a guideline on how much memory is used as redundant models - are only removed from disk when the ensemble builder finishes an iteration. - - .. note:: - - Especially when running in parallel it can happen that multiple models are constructed during - one run of the ensemble builder and thus *Auto-sklearn* can exceed the given limit. - - .. note:: - - These limits do only apply to models and their predictions, but not to other files stored in - the temporary directory such as the log files. - -The Search Space -================ - -.. collapse:: How can I restrict the searchspace? - - The following shows an example of how to exclude all preprocessing methods and restrict the configuration space to - only random forests. +Log files and output +==================== - .. code:: python +Where does Auto-sklearn output files by default? +------------------------------------------------ - import autosklearn.classification - automl = autosklearn.classification.AutoSklearnClassifier( - include = { - 'classifier': ["random_forest"], - 'feature_preprocessor': ["no_preprocessing"] - }, - exclude=None - ) - automl.fit(X_train, y_train) - predictions = automl.predict(X_test) +*Auto-sklearn* heavily uses the hard drive to store temporary data, models and log files which can +be used to inspect the behavior of Auto-sklearn. Each run of Auto-sklearn requires +its own directory. If not provided by the user, *Auto-sklearn* requests a temporary directory from +Python, which by default is located under ``/tmp`` and starts with ``autosklearn_tmp_`` followed +by a random string. By default, this directory is deleted when the *Auto-sklearn* object is +destroyed. If you want to keep these files you can pass the argument +``delete_tmp_folder_after_terminate=True`` to the *Auto-sklearn* object. - **Note:** The strings used to identify estimators and preprocessors are the filenames without *.py*. +The :class:`autosklearn.classification.AutoSklearnClassifier` and all other *auto-sklearn* +estimators accept the argument ``tmp_directory`` which change where such output is written to. - For a full list please have a look at the source code (in `autosklearn/pipeline/components/`): +There's an additional argument ``output_directory`` which can be passed to *Auto-sklearn* and it +controls where test predictions of the ensemble are stored if the test set is passed to ``fit()``. - * `Classifiers `_ - * `Regressors `_ - * `Preprocessors `_ +Auto-sklearn eats up all my disk space +-------------------------------------- - We do also provide an example on how to restrict the classifiers to search over - :ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py`. +*Auto-sklearn* heavily uses the hard drive to store temporary data, models and log files which can +be used to inspect the behavior of Auto-sklearn. By default, *Auto-sklearn* stores 50 +models and their predictions on the validation data (which is a subset of the training data in +case of holdout and the full training data in case of cross-validation) on the hard drive. +Redundant models and their predictions (i.e. when we have more than 50 models) are removed +everytime the ensemble builder finishes an iteration, which means that the number of models stored +on disk can temporarily be higher if a model is output while the ensemble builder is running. -.. collapse:: How can I turn off data preprocessing? +One can therefore change the number of models that will be stored on disk by passing an integer +for the argument ``max_models_on_disc`` to *Auto-sklearn*, for example reduce the number of models +stored on disk if you have space issues. - Data preprocessing includes One-Hot encoding of categorical features, imputation - of missing values and the normalization of features or samples. These ensure that - the data the gets to the sklearn models is well formed and can be used for - training models. +As the number of models is only an indicator of the disk space used it is also possible to pass +the memory in MB the models are allowed to use as a ``float`` (also via the ``max_models_on_disc`` +arguments). As above, this is rather a guideline on how much memory is used as redundant models +are only removed from disk when the ensemble builder finishes an iteration. - While this is necessary in general, if you'd like to disable this step, please - refer to this :ref:`example `. +.. note:: -.. collapse:: How can I turn off feature preprocessing? + Especially when running in parallel it can happen that multiple models are constructed during + one run of the ensemble builder and thus *Auto-sklearn* can exceed the given limit. - Feature preprocessing is a single transformer which implements for example feature - selection or transformation of features into a different space (i.e. PCA). +.. note:: - This can be turned off by setting - ``include={'feature_preprocessor'=["no_preprocessing"]}`` as shown in the example above. + These limits do only apply to models and their predictions, but not to other files stored in + the temporary directory such as the log files. -.. collapse:: Will non-scikit-learn models be added to Auto-sklearn? +Available machine learning models +================================= - The short answer: no. +Will non-scikit-learn models be added to Auto-sklearn? +------------------------------------------------------ - The long answer answer is a bit more nuanced: maintaining Auto-sklearn requires a lot of time and - effort, which would grow even larger when depending on more libraries. Also, adding more - libraries would require us to generate meta-data more often. Lastly, having more choices does not - guarantee a better performance for most users as having more choices demands a longer search for - good models and can lead to more overfitting. +The short answer: no. - Nevertheless, everyone can still add their favorite model to Auto-sklearn's search space by - following the `examples on how to extend Auto-sklearn - `_. +The long answer answer is a bit more nuanced: maintaining Auto-sklearn requires a lot of time and +effort, which would grow even larger when depending on more libraries. Also, adding more +libraries would require us to generate meta-data more often. Lastly, having more choices does not +guarantee a better performance for most users as having more choices demands a longer search for +good models and can lead to more overfitting. - If there is interest in creating a Auto-sklearn-contrib repository with 3rd-party models please - open an issue for that. +Nevertheless, everyone can still add their favorite model to Auto-sklearn's search space by +following the `examples on how to extend Auto-sklearn +`_. -.. collapse:: How can I only search for interpretable models +If there is interest in creating a Auto-sklearn-contrib repository with 3rd-party models please +open an issue for that. - Auto-sklearn can be restricted to only use interpretable models and preprocessing algorithms. - Please see the Section :ref:`space` to learn how to restrict the models - which are searched over or see the Example - :ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py`. +Can the preprocessing be disabled +--------------------------------- - We don't provide a judgement which of the models are interpretable as this is very much up to the - specific use case, but would like to note that decision trees and linear models usually most - interpretable. +Feature preprocessing can be disabled as discussed in the example +:ref:`restricting_the_searchspace`. Other preprocessing steps such as one hot encoding, missing +feature imputation and normalization cannot yet be disabled, but we're working on that. -Ensembling -========== +Usage +===== -.. collapse:: What can I configure wrt the ensemble building process? +Only use interpretable models +----------------------------- - The following hyperparameters control how the ensemble is constructed: +Auto-sklearn can be restricted to only use interpretable models and preprocessing algorithms. +Please see the Section :ref:`restricting_the_searchspace` to learn how to restrict the models +which are searched over or see the Example +:ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py`. - * ``ensemble_size`` determines the maximal size of the ensemble. If it is set to zero, no ensemble will be constructed. - * ``ensemble_nbest`` allows the user to directly specify the number of models considered for the ensemble. This hyperparameter can be an integer *n*, such that only the best *n* models are used in the final ensemble. If a float between 0.0 and 1.0 is provided, ``ensemble_nbest`` would be interpreted as a fraction suggesting the percentage of models to use in the ensemble building process (namely, if ensemble_nbest is a float, library pruning is implemented as described in `Caruana et al. (2006) `_). - * ``max_models_on_disc`` defines the maximum number of models that are kept on the disc, as a mechanism to control the amount of disc space consumed by *auto-sklearn*. Throughout the automl process, different individual models are optimized, and their predictions (and other metadata) is stored on disc. The user can set the upper bound on how many models are acceptable to keep on disc, yet this variable takes priority in the definition of the number of models used by the ensemble builder (that is, the minimum of ``ensemble_size``, ``ensemble_nbest`` and ``max_models_on_disc`` determines the maximal amount of models used in the ensemble). If set to None, this feature is disabled. +We don't provide a judgement which of the models are interpretable as this is very much up to the +specific use case, but would like to note that decision trees and linear models usually most +interpretable. -.. collapse:: Which models are in the final ensemble? +Limiting the number of model evaluations +---------------------------------------- - The results obtained from the final ensemble can be printed by calling ``show_models()`` or ``leaderboard()``. - The *auto-sklearn* ensemble is composed of scikit-learn models that can be inspected as exemplified - in the Example :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py`. +In certain cases, for example for debugging, it can be helpful to limit the number of +model evaluations. We do not provide this as an argument in the API as we believe that it +should NOT be used in practice, but that the user should rather provide time limits. +An example on how to add the number of models to try as an additional stopping condition +can be found `in this github issue `_. +Please note that Auto-sklearn will stop when either the time limit or the number of +models termination condition is reached. -.. collapse:: Can I fit an ensemble also only post-hoc? +Ensemble contains only a dummy model +------------------------------------ - It is possible to build ensembles post-hoc. An example on how to do this (first searching for individual models, and then building an ensemble from them) can be seen in :ref:`sphx_glr_examples_60_search_example_sequential.py`. +This is a symptom of the problem that all runs started by Auto-sklearn failed. Usually, the issue +is that the runtime or memory limit were too tight. Please check the output of +``sprint_statistics`` to see the distribution of why runs failed. If there are mostly crashed +runs, please check the log file for further details. If there are mostly runs that exceed the +memory or time limit, please increase the respective limit and rerun the optimization. -Configuring the Search Procedure -================================ +Parallel processing and oversubscription +---------------------------------------- -.. collapse:: Can I change the resampling strategy? +Auto-sklearn wraps scikit-learn and therefore inherits its parallelism implementation. In short, +scikit-learn uses two modes of parallelizing computations: - Examples for using holdout and cross-validation can be found in :ref:`example ` +1. By using joblib to distribute independent function calls on multiple cores. +2. By using lower level libraries such as OpenMP and numpy to distribute more fine-grained + computation. -.. collapse:: Can I use a custom metric +This means that Auto-sklearn can use more resources than expected by the user. For technical +reasons we can only control the 1st way of parallel execution, but not the 2nd. Thus, the user +needs to make sure that the lower level parallelization libraries only use as many cores as +allocated (on a laptop or workstation running a single copy of Auto-sklearn it can be fine to not +adjust this, but when using a compute cluster it is necessary to align the parallelism setting +with the number of requested CPUs). This can be done by setting the following environment +variables: ``MKL_NUM_THREADS``, ``OPENBLAS_NUM_THREADS``, ``BLIS_NUM_THREADS`` and +``OMP_NUM_THREADS``. - Examples for using a custom metric can be found in :ref:`example ` +More details can be found in the `scikit-learn docs `_. Meta-Learning ============= -.. collapse:: Which datasets are used for meta-learning? - - We updated the list of datasets used for meta-learning several times and this list now differs - significantly from the original 140 datasets we used in 2015 when the paper and the package were - released. An up-to-date list of `OpenML task IDs `_ can be found - on `github `_. - -.. collapse:: How can datasets from the meta-data be excluded? - - For *Auto-sklearn 1.0* one can pass the dataset name via the ``fit()`` function. If a dataset - with the same name is within the meta-data, that datasets will not be used. - - For *Auto-sklearn 2.0* it is not possible to do so because of the method used to construct the - meta-data. - -.. collapse:: Which meta-features are used for meta-learning? +Which datasets are used for meta-learning? +------------------------------------------ - We do not have a user guide on meta-features but they are all pretty simple and can be found - `in the source code `_. +We updated the list of datasets used for meta-learning several times and this list now differs +significantly from the original 140 datasets we used in 2015 when the paper and the package were +released. An up-to-date list of `OpenML task IDs `_ can be found +on `github `_. -.. collapse:: How is the meta-data generated for Auto-sklearn 1.0? +How can datasets from the meta-data be excluded? +------------------------------------------------ - We currently generate meta-data the following way. First, for each of the datasets mentioned - above, we run Auto-sklearn without meta-learning for a total of two days on multiple metrics (for - classification these are accuracy, balanced accuracy, log loss and the area under the curce). - Second, for each run we then have a look at each models that improved the score, i.e. the - trajectory of the best known model at a time, and refit it on the whole training data. Third, for - each of these models we then compute all scores we're interested in, these also include other - ones such F1 and precision. Finally, for each combination of dataset and metric we store the best - model we know of. - -.. collapse:: How is the meta-data generated for Auto-sklearn 2.0? - - Please check `our paper `_ for details. - - -Issues and Debugging -==================== +For *Auto-sklearn 1.0* one can pass the dataset name via the ``fit()`` function. If a dataset +with the same name is within the meta-data, that datasets will not be used. -.. collapse:: How can I limit the number of model evaluations for debugging? - - In certain cases, for example for debugging, it can be helpful to limit the number of - model evaluations. We do not provide this as an argument in the API as we believe that it - should NOT be used in practice, but that the user should rather provide time limits. - An example on how to add the number of models to try as an additional stopping condition - can be found `in this github issue `_. - Please note that Auto-sklearn will stop when either the time limit or the number of - models termination condition is reached. - -.. collapse:: Why does the final ensemble contains only a dummy model? - - This is a symptom of the problem that all runs started by Auto-sklearn failed. Usually, the issue - is that the runtime or memory limit were too tight. Please check the output of - ``sprint_statistics()`` to see the distribution of why runs failed. If there are mostly crashed - runs, please check the log file for further details. If there are mostly runs that exceed the - memory or time limit, please increase the respective limit and rerun the optimization. - -.. collapse:: Auto-sklearn does not use the specified amount of resources? - - Auto-sklearn wraps scikit-learn and therefore inherits its parallelism implementation. In short, - scikit-learn uses two modes of parallelizing computations: - - 1. By using joblib to distribute independent function calls on multiple cores. - 2. By using lower level libraries such as OpenMP and numpy to distribute more fine-grained - computation. - - This means that Auto-sklearn can use more resources than expected by the user. For technical - reasons we can only control the 1st way of parallel execution, but not the 2nd. Thus, the user - needs to make sure that the lower level parallelization libraries only use as many cores as - allocated (on a laptop or workstation running a single copy of Auto-sklearn it can be fine to not - adjust this, but when using a compute cluster it is necessary to align the parallelism setting - with the number of requested CPUs). This can be done by setting the following environment - variables: ``MKL_NUM_THREADS``, ``OPENBLAS_NUM_THREADS``, ``BLIS_NUM_THREADS`` and - ``OMP_NUM_THREADS``. - - More details can be found in the `scikit-learn docs `_. - -Other -===== +For *Auto-sklearn 2.0* it is not possible to do so because of the method used to construct the +meta-data. -.. collapse:: Model persistence +Which meta-features are used for meta-learning? +----------------------------------------------- - *auto-sklearn* is mostly a wrapper around scikit-learn. Therefore, it is - possible to follow the - `persistence Example `_ - from scikit-learn. +We do not have a user guide on meta-features but they are all pretty simple and can be found +`in the source code `_. -.. collapse:: Vanilla auto-sklearn +How is the meta-data generated? +------------------------------- - In order to obtain *vanilla auto-sklearn* as used in `Efficient and Robust Automated Machine Learning - `_ - set ``ensemble_size=1`` and ``initial_configurations_via_metalearning=0``: +Auto-sklearn 1.0 +~~~~~~~~~~~~~~~~ - .. code:: python +We currently generate meta-data the following way. First, for each of the datasets mentioned +above, we run Auto-sklearn without meta-learning for a total of two days on multiple metrics (for +classification these are accuracy, balanced accuracy, log loss and the area under the curce). +Second, for each run we then have a look at each models that improved the score, i.e. the +trajectory of the best known model at a time, and refit it on the whole training data. Third, for +each of these models we then compute all scores we're interested in, these also include other +ones such F1 and precision. Finally, for each combination of dataset and metric we store the best +model we know of. - import autosklearn.classification - automl = autosklearn.classification.AutoSklearnClassifier( - ensemble_size=1, - initial_configurations_via_metalearning=0 - ) +Auto-sklearn 2.0 +~~~~~~~~~~~~~~~~ - An ensemble of size one will result in always choosing the current best model - according to its performance on the validation set. Setting the initial - configurations found by meta-learning to zero makes *auto-sklearn* use the - regular SMAC algorithm for suggesting new hyperparameter configurations. +Please check `our paper `_ for details. diff --git a/doc/index.rst b/doc/index.rst index e0690ac8e7..c82cdb0eae 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -22,7 +22,7 @@ replacement for a scikit-learn estimator: hyperparameter tuning. It leverages recent advantages in *Bayesian optimization*, *meta-learning* and *ensemble construction*. Learn more about the technology behind *auto-sklearn* by reading our paper published at -`NeurIPS 2015 `_ +`NIPS 2015 `_ . .. topic:: NEW: Auto-sklearn 2.0 @@ -38,11 +38,6 @@ the technology behind *auto-sklearn* by reading our paper published at A paper describing our advances is available on `arXiv `_. -.. topic:: NEW: Material from tutorials and presentations - - We provide slides and notebooks from talks and tutorials here: `auto-sklearn-talks `_ - - Example ******* diff --git a/doc/installation.rst b/doc/installation.rst index 544dd9fff5..dff3cecd36 100644 --- a/doc/installation.rst +++ b/doc/installation.rst @@ -21,8 +21,8 @@ need: * SWIG (`get SWIG here `_). -For an explanation of missing Microsoft Windows and macOS support please -check the Section `Windows/macOS compatibility`_. +For an explanation of missing Microsoft Windows and MAC OSX support please +check the Section `Windows/OSX compatibility`_. Installing auto-sklearn ======================= @@ -100,33 +100,9 @@ to read in more details check for more information about Conda forge check `conda-forge documentations `_. -Source Installation -=================== - -You can install auto-sklearn directly form source by following the below: - -.. code:: bash - git clone --recurse-submodules git@github.com:automl/auto-sklearn.git - cd auto-sklearn - - # Install it in editable mode with all optional dependencies - pip install -e ".[test,doc,examples]" - -We use submodules so you will have to make sure the submodule is initialized if you -missed the `--recurse-submodules` option. - -.. code:: bash - - git clone git@github.com:automl/auto-sklearn.git - cd auto-sklearn - git submodule update --init --recursive - - pip install -e ".[test,doc,examples]" - - -Windows/macOS compatibility -=========================== +Windows/OSX compatibility +========================= Windows ~~~~~~~ @@ -144,15 +120,15 @@ Possible solutions: * docker image -macOS -~~~~~ +Mac OSX +~~~~~~~ -We currently do not know if *auto-sklearn* works on macOS. There are at least two -issues holding us back from actively supporting macOS: +We currently do not know if *auto-sklearn* works on OSX. There are at least two +issues holding us back from actively supporting OSX: * The ``resource`` module cannot enforce a memory limit on a Python process (see `SMAC3/issues/115 `_). -* Not all dependencies we are using are set up to work on macOS. +* Not all dependencies we are using are set up to work on OSX. In case you're having issues installing the `pyrfr package `_, check out `this installation suggestion on github `_. diff --git a/doc/manual.rst b/doc/manual.rst index 2a3df6528b..252626666d 100644 --- a/doc/manual.rst +++ b/doc/manual.rst @@ -6,299 +6,232 @@ Manual ====== -This manual gives an overview of different aspects of *auto-sklearn*. For each section, we either references examples or -give short explanations (click the title to expand text), e.g. +This manual shows how to use several aspects of auto-sklearn. It either +references the examples where possible or explains certain configurations. -.. collapse:: Code examples +Examples +======== - We provide examples on using *auto-sklearn* for multiple use cases ranging from - simple classification to advanced uses such as feature importance, parallel runs - and customization. They can be found in the :ref:`sphx_glr_examples`. +We provide examples on using *auto-sklearn* for multiple use cases ranging from +simple classification to advanced uses such as feature importance, parallel runs +and customization. They can be found in the :ref:`sphx_glr_examples`. -.. collapse:: Material from talks and presentations - - We provide resources for talks, tutorials and presentations on *auto-sklearn* under `auto-sklearn-talks `_ - -.. _limits: - -Resource limits -=============== - -A crucial feature of *auto-sklearn* is limiting the resources (memory and time) which the scikit-learn algorithms are -allowed to use. Especially for large datasets, on which algorithms can take several hours and make the machine swap, -it is important to stop the evaluations after some time in order to make progress in a reasonable amount of time. -Setting the resource limits is therefore a tradeoff between optimization time and the number of models that can be -tested. - -.. collapse:: Time and memory limits - - While *auto-sklearn* alleviates manual hyperparameter tuning, the user still - has to set memory and time limits. For most datasets a memory limit of 3GB or - 6GB as found on most modern computers is sufficient. For the time limits it - is harder to give clear guidelines. If possible, a good default is a total - time limit of one day, and a time limit of 30 minutes for a single run. - - Further guidelines can be found in - `auto-sklearn/issues/142 `_. - -.. collapse:: CPU cores - - By default, *auto-sklearn* uses **one core**. See also :ref:`parallel` on how to configure this. - -.. _space: - -The search space -================ - -*Auto-sklearn* by default searches a large space to find a well performing configuration. However, it is also possible -to restrict the searchspace: - -.. collapse:: Restricting the searchspace - - The following shows an example of how to exclude all preprocessing methods and restrict the configuration space to - only random forests. - - .. code:: python - - import autosklearn.classification - automl = autosklearn.classification.AutoSklearnClassifier( - include = { - 'classifier': ["random_forest"], - 'feature_preprocessor': ["no_preprocessing"] - }, - exclude=None - ) - automl.fit(X_train, y_train) - predictions = automl.predict(X_test) +Time and memory limits +====================== - **Note:** The strings used to identify estimators and preprocessors are the filenames without *.py*. +A crucial feature of *auto-sklearn* is limiting the resources (memory and +time) which the scikit-learn algorithms are allowed to use. Especially for +large datasets, on which algorithms can take several hours and make the +machine swap, it is important to stop the evaluations after some time in order +to make progress in a reasonable amount of time. Setting the resource limits +is therefore a tradeoff between optimization time and the number of models +that can be tested. - For a full list please have a look at the source code (in `autosklearn/pipeline/components/`): +While *auto-sklearn* alleviates manual hyperparameter tuning, the user still +has to set memory and time limits. For most datasets a memory limit of 3GB or +6GB as found on most modern computers is sufficient. For the time limits it +is harder to give clear guidelines. If possible, a good default is a total +time limit of one day, and a time limit of 30 minutes for a single run. - * `Classifiers `_ - * `Regressors `_ - * `Preprocessors `_ +Further guidelines can be found in +`auto-sklearn/issues/142 `_. - We do also provide an example on how to restrict the classifiers to search over - :ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py`. +.. _restricting_the_searchspace: -.. collapse:: Turn off data preprocessing +Restricting the searchspace +=========================== - Data preprocessing includes One-Hot encoding of categorical features, imputation - of missing values and the normalization of features or samples. These ensure that - the data the gets to the sklearn models is well formed and can be used for - training models. +Instead of using all available estimators, it is possible to restrict +*auto-sklearn*'s searchspace. The following shows an example of how to exclude +all preprocessing methods and restrict the configuration space to only +random forests. - While this is necessary in general, if you'd like to disable this step, please - refer to this :ref:`example `. +.. code:: python -.. collapse:: Turn off feature preprocessing + import autosklearn.classification + automl = autosklearn.classification.AutoSklearnClassifier( + include = { + 'classifier': ["random_forest"], + 'feature_preprocessor': ["no_preprocessing"] + }, + exclude=None + ) + automl.fit(X_train, y_train) + predictions = automl.predict(X_test) - Feature preprocessing is a single transformer which implements for example feature - selection or transformation of features into a different space (i.e. PCA). +**Note:** The strings used to identify estimators and preprocessors are the filenames without *.py*. - This can be turned off by setting - ``include={'feature_preprocessor'=["no_preprocessing"]}`` as shown in the example above. +For a full list please have a look at the source code (in `autosklearn/pipeline/components/`): -.. _bestmodel: + * `Classifiers `_ + * `Regressors `_ + * `Preprocessors `_ -Model selection -=============== +We do also provide an example on how to restrict the classifiers to search over +:ref:`sphx_glr_examples_40_advanced_example_interpretable_models.py`. -*Auto-sklearn* implements different strategies to identify the best performing model. For some use cases it might be -necessary to adapt the resampling strategy or define a custom metric: +Data preprocessing +~~~~~~~~~~~~~~~~~~ +Data preprocessing includes One-Hot encoding of categorical features, imputation +of missing values and the normalization of features or samples. These ensure that +the data the gets to the sklearn models is well formed and can be used for +training models. -.. collapse:: Use different resampling strategies +While this is necessary in general, if you'd like to disable this step, please +refer to this :ref:`example `. - Examples for using holdout and cross-validation can be found in :ref:`example ` +Feature preprocessing +~~~~~~~~~~~~~~~~~~~~~ +Feature preprocessing is a single transformer which implements for example feature +selection or transformation of features into a different space (i.e. PCA). -.. collapse:: Use a custom metric +This can be turned off by setting +``include={'feature_preprocessor'=["no_preprocessing"]}`` as shown in the example above. - Examples for using a custom metric can be found in :ref:`example ` +Resampling strategies +===================== -.. _ensembles: +Examples for using holdout and cross-validation can be found in :ref:`auto-sklearn/examples/ `. -Ensembling -========== +Supported Inputs +================ +*auto-sklearn* can accept targets for the following tasks (more details on `Sklearn algorithms `_): -To get the best performance out of the evaluated models, *auto-sklearn* uses ensemble selection by `Caruana et al. (2004) `_ -to build an ensemble based on the models’ prediction for the validation set. +* Binary Classification +* Multiclass Classification +* Multilabel Classification +* Regression +* Multioutput Regression -.. collapse:: Configure the ensemble building process +You can provide feature and target training pairs (X_train/y_train) to *auto-sklearn* to fit an +ensemble of pipelines as described in the next section. This X_train/y_train dataset must belong +to one of the supported formats: np.ndarray, pd.DataFrame, scipy.sparse.csr_matrix and python lists. +Optionally, you can measure the ability of this fitted model to generalize to unseen data by +providing an optional testing pair (X_test/Y_test). For further details, please refer to the +Example :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`. +Supported formats for these training and testing pairs are: np.ndarray, +pd.DataFrame, scipy.sparse.csr_matrix and python lists. - The following hyperparameters control how the ensemble is constructed: +If your data contains categorical values (in the features or targets), autosklearn will automatically encode your data using a `sklearn.preprocessing.LabelEncoder `_ for unidimensional data and a `sklearn.preprocessing.OrdinalEncoder `_ for multidimensional data. - * ``ensemble_size`` determines the maximal size of the ensemble. If it is set to zero, no ensemble will be constructed. - * ``ensemble_nbest`` allows the user to directly specify the number of models considered for the ensemble. This hyperparameter can be an integer *n*, such that only the best *n* models are used in the final ensemble. If a float between 0.0 and 1.0 is provided, ``ensemble_nbest`` would be interpreted as a fraction suggesting the percentage of models to use in the ensemble building process (namely, if ensemble_nbest is a float, library pruning is implemented as described in `Caruana et al. (2006) `_). - * ``max_models_on_disc`` defines the maximum number of models that are kept on the disc, as a mechanism to control the amount of disc space consumed by *auto-sklearn*. Throughout the automl process, different individual models are optimized, and their predictions (and other metadata) is stored on disc. The user can set the upper bound on how many models are acceptable to keep on disc, yet this variable takes priority in the definition of the number of models used by the ensemble builder (that is, the minimum of ``ensemble_size``, ``ensemble_nbest`` and ``max_models_on_disc`` determines the maximal amount of models used in the ensemble). If set to None, this feature is disabled. +Regarding the features, there are two methods to guide *auto-sklearn* to properly encode categorical columns: -.. collapse:: Inspect the final ensemble +* Providing a X_train/X_test numpy array with the optional flag feat_type. For further details, you + can check the Example :ref:`sphx_glr_examples_40_advanced_example_feature_types.py`. +* You can provide a pandas DataFrame, with properly formatted columns. If a column has numerical + dtype, *auto-sklearn* will not encode it and it will be passed directly to scikit-learn. If the + column has a categorical/boolean class, it will be encoded. If the column is of any other type + (Object or Timeseries), an error will be raised. For further details on how to properly encode + your data, you can check the Pandas Example + `Working with categorical data `_). + If you are working with time series, it is recommended that you follow this approach + `Working with time data `_. - The results obtained from the final ensemble can be printed by calling ``show_models()``. - The *auto-sklearn* ensemble is composed of scikit-learn models that can be inspected as exemplified - in the Example :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py`. +Regarding the targets (y_train/y_test), if the task involves a classification problem, such features will be automatically encoded. It is recommended to provide both y_train and y_test during fit, so that a common encoding is created between these splits (if only y_train is provided during fit, the categorical encoder will not be able to handle new classes that are exclusive to y_test). If the task is regression, no encoding happens on the targets. -.. collapse:: Fit ensemble post-hoc +Ensemble Building Process +========================= - To use a single core only, it is possible to build ensembles post-hoc. An example on how to do this (first searching - for individual models, and then building an ensemble from them) can be seen in - :ref:`sphx_glr_examples_60_search_example_sequential.py`. +*auto-sklearn* uses ensemble selection by `Caruana et al. (2004) `_ +to build an ensemble based on the models’ prediction for the validation set. The following hyperparameters control how the ensemble is constructed: +* ``ensemble_size`` determines the maximal size of the ensemble. If it is set to zero, no ensemble will be constructed. +* ``ensemble_nbest`` allows the user to directly specify the number of models considered for the ensemble. This hyperparameter can be an integer *n*, such that only the best *n* models are used in the final ensemble. If a float between 0.0 and 1.0 is provided, ``ensemble_nbest`` would be interpreted as a fraction suggesting the percentage of models to use in the ensemble building process (namely, if ensemble_nbest is a float, library pruning is implemented as described in `Caruana et al. (2006) `_). +* ``max_models_on_disc`` defines the maximum number of models that are kept on the disc, as a mechanism to control the amount of disc space consumed by *auto-sklearn*. Throughout the automl process, different individual models are optimized, and their predictions (and other metadata) is stored on disc. The user can set the upper bound on how many models are acceptable to keep on disc, yet this variable takes priority in the definition of the number of models used by the ensemble builder (that is, the minimum of ``ensemble_size``, ``ensemble_nbest`` and ``max_models_on_disc`` determines the maximal amount of models used in the ensemble). If set to None, this feature is disabled. -.. _inspect: +.. _inspecting_the_results: Inspecting the results ====================== -*auto-sklearn* allows users to inspect the training results and statistics. Assume we have a fitted estimator: +*auto-sklearn* allows users to inspect the training results and statistics. The following example shows how different +statistics can be printed for the inspection. .. code:: python - import autosklearn.classification - automl = autosklearn.classification.AutoSklearnClassifier() - automl.fit(X_train, y_train) - -*auto-sklearn* offers the following ways to inspect the results - -.. collapse:: Basic statistics - - ``sprint_statistics()`` is a method that prints the name of the dataset, the metric used, and the best validation score - obtained by running *auto-sklearn*. It additionally prints the number of both successful and unsuccessful - algorithm runs. - -.. collapse:: Performance over Time - - ``performance_over_time_`` returns a DataFrame containing the models performance over time data, which can - be used for plotting directly (Here is an example: :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`). - - .. code:: python - - automl.performance_over_time_.plot( - x='Timestamp', - kind='line', - legend=True, - title='Auto-sklearn accuracy over time', - grid=True, - ) - plt.show() - -.. collapse:: Evaluated models - - The results obtained from the final ensemble can be printed by calling ``show_models()``. - -.. collapse:: Leaderboard - - ``automl.leaderboard()`` shows the ensemble members, check the :meth:`docs ` for using leaderboard for getting information on *all* runs. - -.. collapse:: Other - - ``cv_results_`` returns a dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame. - -.. _parallel: + import autosklearn.classification + automl = autosklearn.classification.AutoSklearnClassifier() + automl.fit(X_train, y_train) + automl.cv_results_ + automl.performance_over_time_.plot( + x='Timestamp', + kind='line', + legend=True, + title='Auto-sklearn accuracy over time', + grid=True, + ) + plt.show() + + automl.sprint_statistics() + automl.show_models() + +``cv_results_`` returns a dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame. +``performance_over_time_`` returns a DataFrame containing the models performance over time data, which can be used for plotting directly (Here is an example: :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`). +``sprint_statistics()`` is a method that prints the name of the dataset, the metric used, and the best validation score +obtained by running *auto-sklearn*. It additionally prints the number of both successful and unsuccessful +algorithm runs. + +The results obtained from the final ensemble can be printed by calling ``show_models()``. +*auto-sklearn* ensemble is composed of scikit-learn models that can be inspected as exemplified +in the Example :ref:`sphx_glr_examples_40_advanced_example_get_pipeline_components.py`. Parallel computation ==================== -In it's default mode, *auto-sklearn* uses **one core** and interleaves ensemble building with evaluating new -configurations. - -.. collapse:: Parallelization with Dask - - Nevertheless, *auto-sklearn* also supports parallel Bayesian optimization via the use of - `Dask.distributed `_. By providing the arguments ``n_jobs`` - to the estimator construction, one can control the number of cores available to *auto-sklearn* - (As shown in the Example :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py`). - Distributed processes are also supported by providing a custom client object to *auto-sklearn* like - in the Example: :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`. When - multiple cores are - available, *auto-sklearn* will create a worker per core, and use the available workers to both search - for better machine learning models as well as building an ensemble with them until the time resource - is exhausted. +In it's default mode, *auto-sklearn* already uses two cores. The first one is +used for model building, the second for building an ensemble every time a new +machine learning model has finished training. An example on how to do this sequentially (first searching for individual models, and then building an ensemble from them) can be seen in +:ref:`sphx_glr_examples_60_search_example_sequential.py`. - **Note:** *auto-sklearn* requires all workers to have access to a shared file system for storing training data and models. +Nevertheless, *auto-sklearn* also supports parallel Bayesian optimization via the use of +`Dask.distributed `_. By providing the arguments ``n_jobs`` +to the estimator construction, one can control the number of cores available to *auto-sklearn* +(As shown in the Example :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py`). +Distributed processes are also supported by providing a custom client object to *auto-sklearn* like +in the Example: :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`. When +multiple cores are +available, *auto-sklearn* will create a worker per core, and use the available workers to both search +for better machine learning models as well as building an ensemble with them until the time resource +is exhausted. - *auto-sklearn* employs `threadpoolctl `_ to control the number of threads employed by scientific libraries like numpy or scikit-learn. This is done exclusively during the building procedure of models, not during inference. In particular, *auto-sklearn* allows each pipeline to use at most 1 thread during training. At predicting and scoring time this limitation is not enforced by *auto-sklearn*. You can control the number of resources - employed by the pipelines by setting the following variables in your environment, prior to running *auto-sklearn*: +**Note:** *auto-sklearn* requires all workers to have access to a shared file system for storing training data and models. - .. code-block:: shell-session +*auto-sklearn* employs `threadpoolctl `_ to control the number of threads employed by scientific libraries like numpy or scikit-learn. This is done exclusively during the building procedure of models, not during inference. In particular, *auto-sklearn* allows each pipeline to use at most 1 thread during training. At predicting and scoring time this limitation is not enforced by *auto-sklearn*. You can control the number of resources +employed by the pipelines by setting the following variables in your environment, prior to running *auto-sklearn*: - $ export OPENBLAS_NUM_THREADS=1 - $ export MKL_NUM_THREADS=1 - $ export OMP_NUM_THREADS=1 +.. code-block:: shell-session + $ export OPENBLAS_NUM_THREADS=1 + $ export MKL_NUM_THREADS=1 + $ export OMP_NUM_THREADS=1 - For further information about how scikit-learn handles multiprocessing, please check the `Parallelism, resource management, and configuration `_ documentation from the library. -.. _othermanual: +For further information about how scikit-learn handles multiprocessing, please check the `Parallelism, resource management, and configuration `_ documentation from the library. -Other -===== +Model persistence +================= -.. collapse:: Supported input types +*auto-sklearn* is mostly a wrapper around scikit-learn. Therefore, it is +possible to follow the +`persistence Example `_ +from scikit-learn. - *auto-sklearn* can accept targets for the following tasks (more details on `Sklearn algorithms `_): - - * Binary Classification - * Multiclass Classification - * Multilabel Classification - * Regression - * Multioutput Regression - - You can provide feature and target training pairs (X_train/y_train) to *auto-sklearn* to fit an - ensemble of pipelines as described in the next section. This X_train/y_train dataset must belong - to one of the supported formats: np.ndarray, pd.DataFrame, scipy.sparse.csr_matrix and python lists. - Optionally, you can measure the ability of this fitted model to generalize to unseen data by - providing an optional testing pair (X_test/Y_test). For further details, please refer to the - Example :ref:`sphx_glr_examples_40_advanced_example_pandas_train_test.py`. - Supported formats for these training and testing pairs are: np.ndarray, - pd.DataFrame, scipy.sparse.csr_matrix and python lists. - - If your data contains categorical values (in the features or targets), autosklearn will automatically encode your - data using a `sklearn.preprocessing.LabelEncoder `_ - for unidimensional data and a `sklearn.preprocessing.OrdinalEncoder `_ - for multidimensional data. - - Regarding the features, there are two methods to guide *auto-sklearn* to properly encode categorical columns: - - * Providing a X_train/X_test numpy array with the optional flag feat_type. For further details, you - can check the Example :ref:`sphx_glr_examples_40_advanced_example_feature_types.py`. - * You can provide a pandas DataFrame, with properly formatted columns. If a column has numerical - dtype, *auto-sklearn* will not encode it and it will be passed directly to scikit-learn. If the - column has a categorical/boolean class, it will be encoded. If the column is of any other type - (Object or Timeseries), an error will be raised. For further details on how to properly encode - your data, you can check the Pandas Example - `Working with categorical data `_). - If you are working with time series, it is recommended that you follow this approach - `Working with time data `_. - - Regarding the targets (y_train/y_test), if the task involves a classification problem, such features will be - automatically encoded. It is recommended to provide both y_train and y_test during fit, so that a common encoding - is created between these splits (if only y_train is provided during fit, the categorical encoder will not be able - to handle new classes that are exclusive to y_test). If the task is regression, no encoding happens on the - targets. - -.. collapse:: Model persistence - - *auto-sklearn* is mostly a wrapper around scikit-learn. Therefore, it is - possible to follow the - `persistence Example `_ - from scikit-learn. - -.. collapse:: Vanilla auto-sklearn +Vanilla auto-sklearn +==================== - In order to obtain *vanilla auto-sklearn* as used in `Efficient and Robust Automated Machine Learning - `_ - set ``ensemble_size=1`` and ``initial_configurations_via_metalearning=0``: +In order to obtain *vanilla auto-sklearn* as used in `Efficient and Robust Automated Machine Learning +`_ +set ``ensemble_size=1`` and ``initial_configurations_via_metalearning=0``: - .. code:: python +.. code:: python - import autosklearn.classification - automl = autosklearn.classification.AutoSklearnClassifier( - ensemble_size=1, - initial_configurations_via_metalearning=0 - ) + import autosklearn.classification + automl = autosklearn.classification.AutoSklearnClassifier( + ensemble_size=1, + initial_configurations_via_metalearning=0 + ) - An ensemble of size one will result in always choosing the current best model - according to its performance on the validation set. Setting the initial - configurations found by meta-learning to zero makes *auto-sklearn* use the - regular SMAC algorithm for suggesting new hyperparameter configurations. +An ensemble of size one will result in always choosing the current best model +according to its performance on the validation set. Setting the initial +configurations found by meta-learning to zero makes *auto-sklearn* use the +regular SMAC algorithm for suggesting new hyperparameter configurations. diff --git a/doc/releases.rst b/doc/releases.rst index bc7c33a4a1..a96f4c4d67 100644 --- a/doc/releases.rst +++ b/doc/releases.rst @@ -9,40 +9,6 @@ Releases ======== -Version 0.14.4 -============== - -* Fix #1356: SVR degree hyperparameter now only active with "poly" kernel. -* Add #1311: Black format checking (non-strict). -* Maint #1306: Run history is now saved every iteration -* Doc #1309: Updated the doc faqs to include many use cases and the manual for early introductions -* Doc #1322: Fix typo in contribution guide -* Maint #1326: Add isort checker (non-strict) -* Maint #1238, #1346, #1368, #1370: Update warnings in tests -* Maint #1325: Test workflow can now be manually triggered -* Maint #1332: Update docstring and typing of ``include`` and ``exclude`` params -* Add #1260: Support for Python 3.10 -* Add #1318: First update to use the shared backend in a new submodule `automl_common `_ -* Fix #1339: Resolve dependancy issues with ``sphinx_toolbox`` -* Fix #1335: Fix issue where some regression algorithm gave incorrect output dimensions as raised in #1297 -* Doc #1340: Update example for predefined splits -* Fix #1329: Fix random state not being passed to the ConfigurationSpace -* Maint #1348: Stop double triggering of github workflows -* Doc #1349: Rename OSX to macOS in docs -* Add #1321: Change ``show_models()`` to produce actual pipeline objects and not a ``str`` -* Maint #1361: Remove ``flaky`` dependency -* Maint #1366: Make ``SimpleClassificationPipeline`` tests more deterministic -* Maint #1367: Update test values for ``MLPRegressor`` with newer numpy - -Contributors v0.14.4 -******************** - -* Eddie Bergman -* Matthias Feurer -* Katharina Eggensperger -* UserFindingSelf -* partev - Version 0.14.3 ============== @@ -665,7 +631,7 @@ Version 0.4.0 minimization problem. * Implements `#271 `_: XGBoost is available again, even configuring the new dropout functionality. -* New documentation section :ref:`inspect`. +* New documentation section :ref:`inspecting_the_results`. * Fixes `#444 `_: Auto-sklearn now only loads models for refit which are actually relevant for the ensemble. diff --git a/examples/20_basic/example_classification.py b/examples/20_basic/example_classification.py index fcb99b65ef..86fc09a5f4 100644 --- a/examples/20_basic/example_classification.py +++ b/examples/20_basic/example_classification.py @@ -7,8 +7,6 @@ The following example shows how to fit a simple classification model with *auto-sklearn*. """ -from pprint import pprint - import sklearn.datasets import sklearn.metrics @@ -44,7 +42,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ########################################################################### # Get the Score of the final ensemble diff --git a/examples/20_basic/example_multilabel_classification.py b/examples/20_basic/example_multilabel_classification.py index 835b110ea6..b46caa2233 100644 --- a/examples/20_basic/example_multilabel_classification.py +++ b/examples/20_basic/example_multilabel_classification.py @@ -8,7 +8,6 @@ `here `_. """ import numpy as np -from pprint import pprint import sklearn.datasets import sklearn.metrics @@ -31,7 +30,7 @@ # More information on: https://scikit-learn.org/stable/modules/multiclass.html y[y == 'TRUE'] = 1 y[y == 'FALSE'] = 0 -y = y.astype(int) +y = y.astype(np.int) # Using type of target is a good way to make sure your data # is properly formatted @@ -66,7 +65,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ############################################################################ # Print statistics about the auto-sklearn run diff --git a/examples/20_basic/example_multioutput_regression.py b/examples/20_basic/example_multioutput_regression.py index a2e345fcac..5db733da0a 100644 --- a/examples/20_basic/example_multioutput_regression.py +++ b/examples/20_basic/example_multioutput_regression.py @@ -8,7 +8,6 @@ *auto-sklearn*. """ import numpy as numpy -from pprint import pprint from sklearn.datasets import make_regression from sklearn.metrics import r2_score @@ -47,7 +46,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ########################################################################### # Get the Score of the final ensemble diff --git a/examples/20_basic/example_regression.py b/examples/20_basic/example_regression.py index 6b47607db0..adfc390dab 100644 --- a/examples/20_basic/example_regression.py +++ b/examples/20_basic/example_regression.py @@ -7,8 +7,6 @@ The following example shows how to fit a simple regression model with *auto-sklearn*. """ -from pprint import pprint - import sklearn.datasets import sklearn.metrics @@ -45,7 +43,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ##################################### # Get the Score of the final ensemble diff --git a/examples/40_advanced/example_get_pipeline_components.py b/examples/40_advanced/example_get_pipeline_components.py index f7a97ead27..76132291fc 100644 --- a/examples/40_advanced/example_get_pipeline_components.py +++ b/examples/40_advanced/example_get_pipeline_components.py @@ -14,8 +14,6 @@ the sklearn models. This example illustrates how to interact with the sklearn components directly, in this case a PCA preprocessor. """ -from pprint import pprint - import sklearn.datasets import sklearn.metrics @@ -64,17 +62,10 @@ # `Ensemble Selection `_ # to construct ensembles in a post-hoc fashion. The ensemble is a linear # weighting of all models constructed during the hyperparameter optimization. -# This prints the final ensemble. It is a dictionary where ``model_id`` of -# each model is a key, and value is a dictionary containing information -# of that model. A model's dict contains its ``'model_id'``, ``'rank'``, -# ``'cost'``, ``'ensemble_weight'``, and the model itself. The model is -# given by the ``'data_preprocessor'``, ``'feature_preprocessor'``, -# ``'regressor'/'classifier'`` and ``'sklearn_regressor'/'sklearn_classifier'`` -# entries. But for the ``'cv'`` resampling strategy, the same for each cv -# model is stored in the ``'estimators'`` list in the dict, along with the -# ``'voting_model'``. - -pprint(automl.show_models(), indent=4) +# This prints the final ensemble. It is a list of tuples, each tuple being +# the model weight in the ensemble and the model itself. + +print(automl.show_models()) ########################################################################### # Report statistics about the search diff --git a/examples/40_advanced/example_interpretable_models.py b/examples/40_advanced/example_interpretable_models.py index a78695082c..a9a4e015c5 100644 --- a/examples/40_advanced/example_interpretable_models.py +++ b/examples/40_advanced/example_interpretable_models.py @@ -7,8 +7,6 @@ The following example shows how to inspect the models which *auto-sklearn* optimizes over and how to restrict them to an interpretable subset. """ -from pprint import pprint - import autosklearn.classification import sklearn.datasets import sklearn.metrics @@ -72,7 +70,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ########################################################################### # Get the Score of the final ensemble diff --git a/examples/40_advanced/example_resampling.py b/examples/40_advanced/example_resampling.py index 124316a60a..39e76cb481 100644 --- a/examples/40_advanced/example_resampling.py +++ b/examples/40_advanced/example_resampling.py @@ -98,9 +98,8 @@ # data by the first feature. In practice, one would use a splitting according # to the use case at hand. -selected_indices = (X_train[:, 0] < np.mean(X_train[:, 0])).astype(int) resampling_strategy = sklearn.model_selection.PredefinedSplit( - test_fold=selected_indices + test_fold=np.where(X_train[:, 0] < np.mean(X_train[:, 0]))[0] ) automl = autosklearn.classification.AutoSklearnClassifier( @@ -112,8 +111,6 @@ ) automl.fit(X_train, y_train, dataset_name='breast_cancer') -print(automl.sprint_statistics()) - ############################################################################ # For custom resampling strategies (i.e. resampling strategies that are not # defined as strings by Auto-sklearn) it is necessary to perform a refit: diff --git a/examples/60_search/example_random_search.py b/examples/60_search/example_random_search.py index 2c9cc76695..292f005da9 100644 --- a/examples/60_search/example_random_search.py +++ b/examples/60_search/example_random_search.py @@ -12,7 +12,6 @@ as yet another alternative optimizatino strategy. Both examples are intended to show how the optimization strategy in *auto-sklearn* can be adapted. """ # noqa (links are too long) -from pprint import pprint import sklearn.model_selection import sklearn.datasets @@ -76,7 +75,7 @@ def get_roar_object_callback( print('#' * 80) print('Results for ROAR.') # Print the final ensemble constructed by auto-sklearn via ROAR. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -130,7 +129,7 @@ def get_random_search_object_callback( print('Results for random search.') # Print the final ensemble constructed by auto-sklearn via random search. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. diff --git a/examples/60_search/example_sequential.py b/examples/60_search/example_sequential.py index fad088396d..b991802470 100644 --- a/examples/60_search/example_sequential.py +++ b/examples/60_search/example_sequential.py @@ -8,7 +8,6 @@ sequentially. The example below shows how to first fit the models and build the ensembles afterwards. """ -from pprint import pprint import sklearn.model_selection import sklearn.datasets @@ -49,7 +48,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -pprint(automl.show_models(), indent=4) +print(automl.show_models()) ############################################################################ # Get the Score of the final ensemble diff --git a/examples/60_search/example_successive_halving.py b/examples/60_search/example_successive_halving.py index fdb29da6e0..4f95296aef 100644 --- a/examples/60_search/example_successive_halving.py +++ b/examples/60_search/example_successive_halving.py @@ -14,7 +14,7 @@ To get the BOHB algorithm, simply import Hyperband and use it as the intensification strategy. """ # noqa (links are too long) -from pprint import pprint + import sklearn.model_selection import sklearn.datasets @@ -110,7 +110,7 @@ def get_smac_object( ) automl.fit(X_train, y_train, dataset_name='breast_cancer') -pprint(automl.show_models(), indent=4) +print(automl.show_models()) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -143,7 +143,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -177,7 +177,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -208,7 +208,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -245,7 +245,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -pprint(automl.show_models(), indent=4) +print(automl.show_models()) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. diff --git a/examples/80_extending/example_extending_classification.py b/examples/80_extending/example_extending_classification.py index b6132f4c18..3c6c880a0c 100644 --- a/examples/80_extending/example_extending_classification.py +++ b/examples/80_extending/example_extending_classification.py @@ -6,7 +6,6 @@ The following example demonstrates how to create a new classification component for using in auto-sklearn. """ -from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ @@ -150,4 +149,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -pprint(clf.show_models(), indent=4) +print(clf.show_models()) diff --git a/examples/80_extending/example_extending_data_preprocessor.py b/examples/80_extending/example_extending_data_preprocessor.py index 7fdd72e971..6a92fa2bc9 100644 --- a/examples/80_extending/example_extending_data_preprocessor.py +++ b/examples/80_extending/example_extending_data_preprocessor.py @@ -5,7 +5,6 @@ The following example demonstrates how to turn off data preprocessing step in auto-skearn. """ -from pprint import pprint import autosklearn.classification import autosklearn.pipeline.components.data_preprocessing @@ -90,4 +89,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -pprint(clf.show_models(), indent=4) +print(clf.show_models()) diff --git a/examples/80_extending/example_extending_preprocessor.py b/examples/80_extending/example_extending_preprocessor.py index 9ac93a45b3..a67528007d 100644 --- a/examples/80_extending/example_extending_preprocessor.py +++ b/examples/80_extending/example_extending_preprocessor.py @@ -7,7 +7,6 @@ discriminant analysis (LDA) algorithm from sklearn and use it as a preprocessor in auto-sklearn. """ -from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter @@ -131,4 +130,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -pprint(clf.show_models(), indent=4) +print(clf.show_models()) diff --git a/examples/80_extending/example_extending_regression.py b/examples/80_extending/example_extending_regression.py index 3bdc008d4e..7ee53cc975 100644 --- a/examples/80_extending/example_extending_regression.py +++ b/examples/80_extending/example_extending_regression.py @@ -6,7 +6,6 @@ The following example demonstrates how to create a new regression component for using in auto-sklearn. """ -from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ @@ -138,4 +137,4 @@ def get_hyperparameter_search_space(dataset_properties=None): # ===================================== y_pred = reg.predict(X_test) print("r2 score: ", sklearn.metrics.r2_score(y_pred, y_test)) -pprint(reg.show_models(), indent=4) +print(reg.show_models()) diff --git a/requirements.txt b/requirements.txt index b8b77798f9..b499ec0d94 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,5 @@ setuptools typing_extensions -distro numpy>=1.9.0 scipy>=1.7.0 diff --git a/scripts/2015_nips_paper/run/score_ensemble.py b/scripts/2015_nips_paper/run/score_ensemble.py index 3d10954d94..787c3b9174 100644 --- a/scripts/2015_nips_paper/run/score_ensemble.py +++ b/scripts/2015_nips_paper/run/score_ensemble.py @@ -10,7 +10,7 @@ from autosklearn.ensembles.ensemble_selection import EnsembleSelection from autosklearn.metrics import balanced_accuracy -from autosklearn.automl_common.common.utils.backend import create +from autosklearn.util.backend import create def _load_file(f): @@ -102,12 +102,9 @@ def main(input_directories, output_file, task_id, seed, ensemble_size, n_jobs=1) losses = [] top_models_at_step = dict() - backend = create( - temporary_directory=input_directory, - output_directory=input_directory + "_output", - delete_tmp_folder_after_terminate=False, - prefix="auto-sklearn" - ) + backend = create(input_directory, input_directory + "_output", + delete_tmp_folder_after_terminate=False, + shared_mode=True) valid_labels = backend.load_targets_ensemble() score = balanced_accuracy @@ -168,11 +165,9 @@ def main(input_directories, output_file, task_id, seed, ensemble_size, n_jobs=1) def evaluate(input_directory, validation_files, test_files, ensemble_size=50): - backend = create( - temporary_directory=input_directory, - output_directory=input_directory + "_output", - delete_tmp_folder_after_terminate=False, - ) + backend = create(input_directory, input_directory + "_output", + delete_tmp_folder_after_terminate=False, + shared_mode=True) valid_labels = backend.load_targets_ensemble() D = backend.load_datamanager() diff --git a/setup.py b/setup.py index 6107e60321..a38fd20948 100644 --- a/setup.py +++ b/setup.py @@ -30,6 +30,7 @@ "mypy", "pytest-xdist", "pytest-timeout", + "flaky", "openml", "pre-commit", "pytest-cov", @@ -40,14 +41,7 @@ "notebook", "seaborn", ], - "docs": [ - "sphinx<4.3", - "sphinx-gallery", - "sphinx_bootstrap_theme", - "numpydoc", - "sphinx_toolbox", - "docutils==0.16" - ], + "docs": ["sphinx", "sphinx-gallery", "sphinx_bootstrap_theme", "numpydoc"], } with open(os.path.join(HERE, 'autosklearn', '__version__.py')) as fh: diff --git a/test/__init__.py b/test/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/test/conftest.py b/test/conftest.py index d3df7508cd..10d9f3607d 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -7,7 +7,7 @@ import psutil import pytest -from autosklearn.automl_common.common.utils.backend import create, Backend +from autosklearn.util.backend import create, Backend from autosklearn.automl import AutoML @@ -49,9 +49,8 @@ def backend(request): # Make sure the folders we wanna create do not already exist. backend = create( - temporary_directory=tmp, - output_directory=None, - prefix="auto-sklearn" + tmp, + delete_tmp_folder_after_terminate=True, ) def get_finalizer(tmp_dir): diff --git a/test/test_automl/test_automl.py b/test/test_automl/test_automl.py index f021279dce..34c3f58889 100644 --- a/test/test_automl/test_automl.py +++ b/test/test_automl/test_automl.py @@ -64,9 +64,9 @@ def test_fit(dask_client): metric=accuracy, dask_client=dask_client, ) - - automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION) - + automl.fit( + X_train, Y_train, task=MULTICLASS_CLASSIFICATION + ) score = automl.score(X_test, Y_test) assert score > 0.8 assert count_succeses(automl.cv_results_) > 0 @@ -109,9 +109,9 @@ def get_roar_object_callback( metric=accuracy, dask_client=dask_client_single_worker, ) - - automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION) - + automl.fit( + X_train, Y_train, task=MULTICLASS_CLASSIFICATION, + ) score = automl.score(X_test, Y_test) assert score > 0.8 assert count_succeses(automl.cv_results_) > 0 @@ -224,7 +224,8 @@ def test_delete_non_candidate_models(dask_client): max_models_on_disc=3, ) - automl.fit(X, Y, task=MULTICLASS_CLASSIFICATION, X_test=X, y_test=Y) + automl.fit(X, Y, task=MULTICLASS_CLASSIFICATION, + X_test=X, y_test=Y) # Assert at least one model file has been deleted and that there were no # deletion errors @@ -270,9 +271,7 @@ def test_binary_score_and_include(dask_client): metric=accuracy, dask_client=dask_client, ) - automl.fit(X_train, Y_train, task=BINARY_CLASSIFICATION) - assert automl._task == BINARY_CLASSIFICATION # TODO, the assumption from above is not really tested here @@ -295,7 +294,6 @@ def test_automl_outputs(dask_client): dask_client=dask_client, delete_tmp_folder_after_terminate=False, ) - auto.fit( X=X_train, y=Y_train, @@ -304,7 +302,6 @@ def test_automl_outputs(dask_client): dataset_name=name, task=MULTICLASS_CLASSIFICATION, ) - data_manager_file = os.path.join( auto._backend.temporary_directory, '.auto-sklearn', @@ -437,16 +434,11 @@ def test_do_dummy_prediction(dask_client, datasets): # Ensure that the dummy predictions are not in the current working # directory, but in the temporary directory. - unexpected_directory = os.path.join(os.getcwd(), '.auto-sklearn') - expected_directory = os.path.join( - auto._backend.temporary_directory, - '.auto-sklearn', - 'runs', - '1_1_0.0', - 'predictions_ensemble_1_1_0.0.npy' + assert not os.path.exists(os.path.join(os.getcwd(), '.auto-sklearn')) + assert os.path.exists(os.path.join( + auto._backend.temporary_directory, '.auto-sklearn', 'runs', '1_1_0.0', + 'predictions_ensemble_1_1_0.0.npy') ) - assert not os.path.exists(unexpected_directory) - assert os.path.exists(expected_directory) auto._clean_logger() @@ -627,8 +619,9 @@ def test_load_best_individual_model(metric, dask_client): # We cannot easily mock a function sent to dask # so for this test we create the whole set of models/ensembles # but prevent it to be loaded - automl.fit(X_train, Y_train, task=MULTICLASS_CLASSIFICATION) - + automl.fit( + X_train, Y_train, task=MULTICLASS_CLASSIFICATION, + ) automl._backend.load_ensemble = unittest.mock.MagicMock(return_value=None) # A memory error occurs in the ensemble construction diff --git a/test/test_automl/test_estimators.py b/test/test_automl/test_estimators.py index 4de0f767aa..f940550ffa 100644 --- a/test/test_automl/test_estimators.py +++ b/test/test_automl/test_estimators.py @@ -28,7 +28,6 @@ from sklearn.base import ClassifierMixin, RegressorMixin from sklearn.base import is_classifier from smac.tae import StatusType -from dask.distributed import Client from autosklearn.data.validation import InputValidator import autosklearn.pipeline.util as putil @@ -80,7 +79,6 @@ def __call__(self, *args, **kwargs): get_smac_object_callback=get_smac_object_wrapper_instance, max_models_on_disc=None, ) - automl.fit(X_train, Y_train) # Test that the argument is correctly passed to SMAC @@ -274,7 +272,6 @@ def test_performance_over_time_no_ensemble(tmp_dir): seed=1, initial_configurations_via_metalearning=0, ensemble_size=0,) - cls.fit(X_train, Y_train, X_test, Y_test) performance_over_time = cls.performance_over_time_ @@ -300,7 +297,6 @@ def test_cv_results(tmp_dir): original_params = copy.deepcopy(params) cls.fit(X_train, Y_train) - cv_results = cls.cv_results_ assert isinstance(cv_results, dict), type(cv_results) assert isinstance(cv_results['mean_test_score'], np.ndarray), type( @@ -386,7 +382,6 @@ def test_leaderboard( tmp_folder=tmp_dir, seed=1 ) - model.fit(X_train, Y_train) for params in params_generator: @@ -470,157 +465,6 @@ def exclude(lst, s): assert all(leaderboard['ensemble_weight'] > 0) -@pytest.mark.parametrize('estimator', [AutoSklearnRegressor]) -@pytest.mark.parametrize('resampling_strategy', ['holdout']) -@pytest.mark.parametrize('X', [ - np.asarray([[1.0, 1.0, 1.0]] * 25 + [[2.0, 2.0, 2.0]] * 25 + - [[3.0, 3.0, 3.0]] * 25 + [[4.0, 4.0, 4.0]] * 25) -]) -@pytest.mark.parametrize('y', [ - np.asarray([1.0] * 25 + [2.0] * 25 + [3.0] * 25 + [4.0] * 25) -]) -def test_show_models_with_holdout( - tmp_dir: str, - dask_client: Client, - estimator: AutoSklearnEstimator, - resampling_strategy: str, - X: np.ndarray, - y: np.ndarray -) -> None: - """ - Parameters - ---------- - tmp_dir: str - The temporary directory to use for this test - - dask_client: dask.distributed.Client - The dask client to use for this test - - estimator: AutoSklearnEstimator - The estimator to train - - resampling_strategy: str - The resampling strategy to use - - X: np.ndarray - The X data to use for this estimator - - y: np.ndarray - The targets to use for this estimator - - Expects - ------- - * Expects all the model dictionaries to have ``model_keys`` - * Expects all models to have an auto-sklearn wrapped model ``regressor`` - * Expects all models to have a sklearn wrapped model ``sklearn_regressor`` - * Expects no model to have any ``None`` value - """ - - automl = estimator( - time_left_for_this_task=60, - per_run_time_limit=5, - tmp_folder=tmp_dir, - resampling_strategy=resampling_strategy, - dask_client=dask_client - ) - automl.fit(X, y) - - models = automl.show_models().values() - - model_keys = set([ - 'model_id', 'rank', 'cost', 'ensemble_weight', - 'data_preprocessor', 'feature_preprocessor', - 'regressor', 'sklearn_regressor' - ]) - - assert all([model_keys == set(model.keys()) for model in models]) - assert all([model['regressor'] for model in models]) - assert all([model['sklearn_regressor'] for model in models]) - assert not any([None in model.values() for model in models]) - - -@pytest.mark.parametrize('estimator', [AutoSklearnClassifier]) -@pytest.mark.parametrize('resampling_strategy', ['cv']) -@pytest.mark.parametrize('X', [ - np.asarray([[1.0, 1.0, 1.0]] * 50 + [[2.0, 2.0, 2.0]] * 50) -]) -@pytest.mark.parametrize('y', [ - np.asarray([1] * 50 + [2] * 50) -]) -def test_show_models_with_cv( - tmp_dir: str, - dask_client: Client, - estimator: AutoSklearnEstimator, - resampling_strategy: str, - X: np.ndarray, - y: np.ndarray -) -> None: - """ - Parameters - ---------- - tmp_dir: str - The temporary directory to use for this test - - dask_client: dask.distributed.Client - The dask client to use for this test - - estimator: AutoSklearnEstimator - The estimator to train - - resampling_strategy: str - The resampling strategy to use - - X: np.ndarray - The X data to use for this estimator - - y: np.ndarray - The targets to use for this estimator - - Expects - ------- - * Expects all the model dictionaries to have ``model_keys`` - * Expects no model to have any ``None`` value - * Expects all the estimators in a model to have ``estimator_keys`` - * Expects all model estimators to have an auto-sklearn wrapped model ``classifier`` - * Expects all model estimators to have a sklearn wrapped model ``sklearn_classifier`` - * Expects no estimator to have ``None`` value - """ - - automl = estimator( - time_left_for_this_task=120, - per_run_time_limit=5, - tmp_folder=tmp_dir, - resampling_strategy=resampling_strategy, - dask_client=dask_client - ) - automl.fit(X, y) - - models = automl.show_models().values() - - model_keys = set([ - 'model_id', 'rank', - 'cost', 'ensemble_weight', - 'voting_model', 'estimators' - ]) - - estimator_keys = set([ - 'data_preprocessor', 'balancing', - 'feature_preprocessor', 'classifier', - 'sklearn_classifier' - ]) - - assert all([model_keys == set(model.keys()) for model in models]) - assert not any([None in model.values() for model in models]) - assert all([estimator_keys == set(estimator.keys()) - for model in models for estimator in model['estimators']]) - assert all([estimator['classifier'] - for model in models for estimator in model['estimators']]) - assert all([estimator['sklearn_classifier'] - for model in models for estimator in model['estimators']]) - assert not any([None in estimator.values() - for model in models for estimator in model['estimators']]) - - @unittest.mock.patch('autosklearn.estimators.AutoSklearnEstimator.build_automl') def test_fit_n_jobs_negative(build_automl_patch): n_cores = cpu_count() @@ -696,7 +540,6 @@ def test_can_pickle_classifier(tmp_dir, dask_client): tmp_folder=tmp_dir, dask_client=dask_client, ) - automl.fit(X_train, Y_train) initial_predictions = automl.predict(X_test) @@ -794,7 +637,7 @@ def test_classification_pandas_support(tmp_dir, dask_client): ) # Drop NAN!! - X = X.dropna(axis='columns') + X = X.dropna('columns') # This test only make sense if input is dataframe assert isinstance(X, pd.DataFrame) @@ -922,14 +765,12 @@ def test_autosklearn_classification_methods_returns_self(dask_client): exclude={'feature_preprocessor': ['fast_ica']}) automl_fitted = automl.fit(X_train, y_train) - assert automl is automl_fitted automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5) assert automl is automl_ensemble_fitted automl_refitted = automl.refit(X_train.copy(), y_train.copy()) - assert automl is automl_refitted @@ -960,14 +801,12 @@ def test_autosklearn2_classification_methods_returns_self(dask_client): dask_client=dask_client) automl_fitted = automl.fit(X_train, y_train) - assert automl is automl_fitted automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5) assert automl is automl_ensemble_fitted automl_refitted = automl.refit(X_train.copy(), y_train.copy()) - assert automl is automl_refitted predictions = automl_fitted.predict(X_test) @@ -985,14 +824,12 @@ def test_autosklearn2_classification_methods_returns_self_sparse(dask_client): dask_client=dask_client) automl_fitted = automl.fit(X_train, y_train) - assert automl is automl_fitted automl_ensemble_fitted = automl.fit_ensemble(y_train, ensemble_size=5) assert automl is automl_ensemble_fitted automl_refitted = automl.refit(X_train.copy(), y_train.copy()) - assert automl is automl_refitted predictions = automl_fitted.predict(X_test) @@ -1096,15 +933,10 @@ def test_fit_pipeline(dask_client, task_type, resampling_strategy, disable_file_ X_test=X_test, y_test=y_test, ).get_default_configuration() - pipeline, run_info, run_value = automl.fit_pipeline( - X=X_train, - y=y_train, - config=config, - X_test=X_test, - y_test=y_test, - disable_file_output=disable_file_output, - resampling_strategy=resampling_strategy - ) + pipeline, run_info, run_value = automl.fit_pipeline(X=X_train, y=y_train, config=config, + X_test=X_test, y_test=y_test, + disable_file_output=disable_file_output, + resampling_strategy=resampling_strategy) assert isinstance(run_info.config, Configuration) assert run_info.cutoff == 30 @@ -1258,14 +1090,11 @@ def test_autosklearn_anneal(as_frame): if as_frame: # Let autosklearn calculate the feat types automl_fitted = automl.fit(X, y) - else: X_, y_ = sklearn.datasets.fetch_openml(data_id=2, return_X_y=True, as_frame=True) feat_type = ['categorical' if X_[col].dtype.name == 'category' else 'numerical' for col in X_.columns] - automl_fitted = automl.fit(X, y, feat_type=feat_type) - assert automl is automl_fitted automl_ensemble_fitted = automl.fit_ensemble(y, ensemble_size=5) diff --git a/test/test_data/test_target_validator.py b/test/test_data/test_target_validator.py index e864c400e5..bef309468d 100644 --- a/test/test_data/test_target_validator.py +++ b/test/test_data/test_target_validator.py @@ -67,7 +67,7 @@ def input_data_targettest(request): y = y.dropna() y.replace('FALSE', 0, inplace=True) y.replace('TRUE', 1, inplace=True) - y = y.astype(int) + y = y.astype(np.int) return y elif 'sparse' in request.param: # We expect the names to be of the type sparse_csc_nonan diff --git a/test/test_ensemble_builder/ensemble_utils.py b/test/test_ensemble_builder/ensemble_utils.py index b98021c7bd..f0f68044e2 100644 --- a/test/test_ensemble_builder/ensemble_utils.py +++ b/test/test_ensemble_builder/ensemble_utils.py @@ -5,10 +5,10 @@ import numpy as np -from autosklearn.automl_common.common.ensemble_building.abstract_ensemble import AbstractEnsemble - from autosklearn.metrics import make_scorer -from autosklearn.ensemble_builder import EnsembleBuilder +from autosklearn.ensemble_builder import ( + EnsembleBuilder, AbstractEnsemble +) def scorer_function(a, b): diff --git a/test/test_evaluation/evaluation_util.py b/test/test_evaluation/evaluation_util.py index e8ba4edf07..db48703042 100644 --- a/test/test_evaluation/evaluation_util.py +++ b/test/test_evaluation/evaluation_util.py @@ -9,8 +9,8 @@ from sklearn import preprocessing import sklearn.model_selection -from autosklearn.automl_common.common.utils.backend import Backend +from autosklearn.util.backend import Backend from autosklearn.constants import \ MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION, BINARY_CLASSIFICATION, REGRESSION from autosklearn.util.data import convert_to_bin diff --git a/test/test_evaluation/test_abstract_evaluator.py b/test/test_evaluation/test_abstract_evaluator.py index f51820221b..7c3e31b603 100644 --- a/test/test_evaluation/test_abstract_evaluator.py +++ b/test/test_evaluation/test_abstract_evaluator.py @@ -10,11 +10,10 @@ import numpy as np import sklearn.dummy -from autosklearn.automl_common.common.utils.backend import Backend, BackendContext - from autosklearn.evaluation.abstract_evaluator import AbstractEvaluator from autosklearn.pipeline.components.base import _addons from autosklearn.metrics import accuracy +from autosklearn.util.backend import Backend, BackendContext from smac.tae import StatusType this_directory = os.path.dirname(__file__) @@ -253,15 +252,12 @@ def test_file_output(self): context = BackendContext( temporary_directory=os.path.join(self.working_directory, 'tmp'), - output_directory=os.path.join(self.working_directory, 'tmp_output'), delete_tmp_folder_after_terminate=True, - delete_output_folder_after_terminate=True, - prefix="auto-sklearn" ) with unittest.mock.patch.object(Backend, 'load_datamanager') as load_datamanager_mock: load_datamanager_mock.return_value = get_multiclass_classification_datamanager() - backend = Backend(context, prefix="auto-sklearn") + backend = Backend(context) ae = AbstractEvaluator( backend=backend, @@ -298,14 +294,11 @@ def test_add_additional_components(self): context = BackendContext( temporary_directory=os.path.join(self.working_directory, 'tmp'), - output_directory=os.path.join(self.working_directory, 'tmp_output'), delete_tmp_folder_after_terminate=True, - delete_output_folder_after_terminate=True, - prefix="auto-sklearn" ) with unittest.mock.patch.object(Backend, 'load_datamanager') as load_datamanager_mock: load_datamanager_mock.return_value = get_multiclass_classification_datamanager() - backend = Backend(context, prefix="auto-sklearn") + backend = Backend(context) with unittest.mock.patch.object(_addons['classification'], 'add_component') as _: diff --git a/test/test_evaluation/test_test_evaluator.py b/test/test_evaluation/test_test_evaluator.py index 93ea0c2265..d09ec8504a 100644 --- a/test/test_evaluation/test_test_evaluator.py +++ b/test/test_evaluation/test_test_evaluator.py @@ -13,13 +13,12 @@ import numpy as np from smac.tae import StatusType -from autosklearn.automl_common.common.utils.backend import Backend - from autosklearn.constants import MULTILABEL_CLASSIFICATION, BINARY_CLASSIFICATION, \ MULTICLASS_CLASSIFICATION, REGRESSION from autosklearn.evaluation.test_evaluator import TestEvaluator, eval_t from autosklearn.evaluation.util import read_queue from autosklearn.util.pipeline import get_configuration_space +from autosklearn.util.backend import Backend from autosklearn.metrics import accuracy, r2, f1_macro this_directory = os.path.dirname(__file__) diff --git a/test/test_evaluation/test_train_evaluator.py b/test/test_evaluation/test_train_evaluator.py index 28bddcdb09..723abb0d41 100644 --- a/test/test_evaluation/test_train_evaluator.py +++ b/test/test_evaluation/test_train_evaluator.py @@ -19,13 +19,12 @@ import sklearn.model_selection from smac.tae import StatusType, TAEAbortException -from autosklearn.automl_common.common.utils import backend - import autosklearn.evaluation.splitter from autosklearn.data.abstract_data_manager import AbstractDataManager from autosklearn.evaluation.util import read_queue from autosklearn.evaluation.train_evaluator import TrainEvaluator, \ eval_holdout, eval_iterative_holdout, eval_cv, eval_partial_cv, subsample_indices +from autosklearn.util import backend from autosklearn.util.pipeline import get_configuration_space from autosklearn.constants import BINARY_CLASSIFICATION, \ MULTILABEL_CLASSIFICATION,\ @@ -93,11 +92,7 @@ def test_holdout(self, pipeline_mock): pipeline_mock.get_current_iter.return_value = 1 configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -165,11 +160,7 @@ def configuration_fully_fitted(self): pipeline_mock.get_current_iter.side_effect = (2, 4, 8, 16, 32, 64, 128, 256, 512) configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -268,11 +259,7 @@ def configuration_fully_fitted(self): pipeline_mock.get_current_iter.side_effect = (2, 4, 8, 16, 32, 64, 128, 256, 512) configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -344,11 +331,7 @@ def test_iterative_holdout_not_iterative(self, pipeline_mock): pipeline_mock.get_additional_run_info.return_value = None configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -392,11 +375,7 @@ def test_cv(self, pipeline_mock): pipeline_mock.get_additional_run_info.return_value = None configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -452,11 +431,7 @@ def test_partial_cv(self, pipeline_mock): D.name = 'test' configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -518,11 +493,7 @@ def configuration_fully_fitted(self): pipeline_mock.get_current_iter.side_effect = (2, 4, 8, 16, 32, 64, 128, 256, 512) configuration = unittest.mock.Mock(spec=Configuration) - backend_api = backend.create( - temporary_directory=self.tmp_dir, - output_directory=None, - prefix="auto-sklearn" - ) + backend_api = backend.create(self.tmp_dir) backend_api.load_datamanager = lambda: D queue_ = multiprocessing.Queue() @@ -675,7 +646,7 @@ def test_file_output(self, loss_mock, model_mock): ) ) - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_subsample_indices_classification(self, mock, backend_mock): @@ -727,7 +698,7 @@ def test_subsample_indices_classification(self, mock, backend_mock): 'classes = 2', subsample_indices, train_indices, 0.9999, evaluator.task_type, evaluator.Y_train) - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_subsample_indices_regression(self, mock, backend_mock): @@ -800,7 +771,7 @@ def test_predict_proba_binary_classification(self, mock): @unittest.mock.patch.object(TrainEvaluator, 'file_output') @unittest.mock.patch.object(TrainEvaluator, '_partial_fit_and_predict_standard') - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_fit_predict_and_loss_standard_additional_run_info( self, mock, backend_mock, _partial_fit_and_predict_mock, @@ -893,7 +864,7 @@ def __call__(self, *args, **kwargs): @unittest.mock.patch.object(TrainEvaluator, '_loss') @unittest.mock.patch.object(TrainEvaluator, 'finish_up') - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_fit_predict_and_loss_iterative_additional_run_info( self, mock, backend_mock, finish_up_mock, loss_mock, @@ -942,7 +913,7 @@ def __call__(self): @unittest.mock.patch.object(TrainEvaluator, '_loss') @unittest.mock.patch.object(TrainEvaluator, 'finish_up') - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_fit_predict_and_loss_iterative_noniterativemodel_additional_run_info( self, mock, backend_mock, finish_up_mock, loss_mock, @@ -981,7 +952,7 @@ def test_fit_predict_and_loss_iterative_noniterativemodel_additional_run_info( @unittest.mock.patch.object(TrainEvaluator, '_loss') @unittest.mock.patch.object(TrainEvaluator, 'finish_up') - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_fit_predict_and_loss_budget_additional_run_info( self, mock, backend_mock, finish_up_mock, loss_mock, @@ -1032,7 +1003,7 @@ def __call__(self): @unittest.mock.patch.object(TrainEvaluator, '_loss') @unittest.mock.patch.object(TrainEvaluator, 'finish_up') - @unittest.mock.patch('autosklearn.automl_common.common.utils.backend.Backend') + @unittest.mock.patch('autosklearn.util.backend.Backend') @unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline') def test_fit_predict_and_loss_budget_2_additional_run_info( self, mock, backend_mock, finish_up_mock, loss_mock, diff --git a/test/test_metalearning/pyMetaLearn/test_meta_base.py b/test/test_metalearning/pyMetaLearn/test_meta_base.py index b1ac39ee2a..ffc2b3b593 100644 --- a/test/test_metalearning/pyMetaLearn/test_meta_base.py +++ b/test/test_metalearning/pyMetaLearn/test_meta_base.py @@ -17,8 +17,8 @@ def setUp(self): data_dir = os.path.join(data_dir, 'test_meta_base_data') os.chdir(data_dir) - pipeline = autosklearn.pipeline.classification.SimpleClassificationPipeline() - cs = pipeline.get_hyperparameter_search_space() + cs = autosklearn.pipeline.classification.SimpleClassificationPipeline()\ + .get_hyperparameter_search_space() self.logger = logging.getLogger() self.base = MetaBase(cs, data_dir, logger=self.logger) diff --git a/test/test_metalearning/pyMetaLearn/test_meta_features_sparse.py b/test/test_metalearning/pyMetaLearn/test_meta_features_sparse.py index 3239184469..99a641df7d 100644 --- a/test/test_metalearning/pyMetaLearn/test_meta_features_sparse.py +++ b/test/test_metalearning/pyMetaLearn/test_meta_features_sparse.py @@ -158,7 +158,7 @@ def test_missing_values(sparse_data): X, y, logging.getLogger('Meta'), categorical) assert sparse.issparse(mf.value) assert mf.value.shape == X.shape - assert mf.value.dtype == bool + assert mf.value.dtype == np.bool assert 0 == np.sum(mf.value.data) diff --git a/test/test_metalearning/pyMetaLearn/test_metalearner.py b/test/test_metalearning/pyMetaLearn/test_metalearner.py index 58f2ce800a..8780e4270f 100644 --- a/test/test_metalearning/pyMetaLearn/test_metalearner.py +++ b/test/test_metalearning/pyMetaLearn/test_metalearner.py @@ -23,8 +23,8 @@ def setUp(self): data_dir = os.path.join(data_dir, 'test_meta_base_data') os.chdir(data_dir) - pipeline = autosklearn.pipeline.classification.SimpleClassificationPipeline() - self.cs = pipeline.get_hyperparameter_search_space() + self.cs = autosklearn.pipeline.classification\ + .SimpleClassificationPipeline().get_hyperparameter_search_space() self.logger = logging.getLogger() meta_base = MetaBase(self.cs, data_dir, logger=self.logger) diff --git a/test/test_metric/test_metrics.py b/test/test_metric/test_metrics.py index 3c6ff73c2b..ea00da9275 100644 --- a/test/test_metric/test_metrics.py +++ b/test/test_metric/test_metrics.py @@ -1,5 +1,4 @@ import unittest -import warnings import pytest @@ -382,17 +381,6 @@ def test_classification_binary(self): self.assertLess(current_score, previous_score) def test_classification_multiclass(self): - # The last check in this test has a mismatch between the number of - # labels predicted in y_pred and the number of labels in y_true. - # This triggers several warnings but we are aware. - # - # TODO convert to pytest with fixture - # - # This test should be parameterized so we can identify which metrics - # cause which warning specifically and rectify if needed. - ignored_warnings = [ - (UserWarning, 'y_pred contains classes not in y_true') - ] for metric, scorer in autosklearn.metrics.CLASSIFICATION_METRICS.items(): # Skip functions not applicable for multiclass classification. @@ -400,51 +388,27 @@ def test_classification_multiclass(self): 'precision', 'recall', 'f1', 'precision_samples', 'recall_samples', 'f1_samples']: continue - - y_true = np.array( - [0.0, 0.0, 1.0, 1.0, 2.0] - ) - - y_pred = np.array([ - [1.0, 0.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 1.0, 0.0], - [0.0, 1.0, 0.0], - [0.0, 0.0, 1.0] - ]) + y_true = np.array([0.0, 0.0, 1.0, 1.0, 2.0]) + y_pred = np.array([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], + [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) previous_score = scorer._optimum current_score = scorer(y_true, y_pred) self.assertAlmostEqual(current_score, previous_score) - y_pred = np.array([ - [1.0, 0.0, 0.0], - [1.0, 0.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 1.0, 0.0], - [0.0, 0.0, 1.0], - ]) + y_pred = np.array([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], + [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) previous_score = current_score current_score = scorer(y_true, y_pred) self.assertLess(current_score, previous_score) - y_pred = np.array([ - [0.0, 0.0, 1.0], - [0.0, 1.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 1.0, 0.0], - [0.0, 1.0, 0.0] - ]) + y_pred = np.array([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], + [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]]) previous_score = current_score current_score = scorer(y_true, y_pred) self.assertLess(current_score, previous_score) - y_pred = np.array([ - [0.0, 0.0, 1.0], - [0.0, 0.0, 1.0], - [1.0, 0.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 1.0, 0.0] - ]) + y_pred = np.array([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], + [1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) previous_score = current_score current_score = scorer(y_true, y_pred) self.assertLess(current_score, previous_score) @@ -455,15 +419,8 @@ def test_classification_multiclass(self): [1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] ) - - with warnings.catch_warnings(): - for category, message in ignored_warnings: - warnings.filterwarnings( - 'ignore', category=category, message=message - ) - - score = scorer(y_true, y_pred) - self.assertTrue(np.isfinite(score)) + score = scorer(y_true, y_pred) + self.assertTrue(np.isfinite(score)) def test_classification_multilabel(self): diff --git a/test/test_pipeline/components/classification/test_base.py b/test/test_pipeline/components/classification/test_base.py index 4fc381af56..e6f2bc1393 100644 --- a/test/test_pipeline/components/classification/test_base.py +++ b/test/test_pipeline/components/classification/test_base.py @@ -9,8 +9,6 @@ import sklearn.metrics import numpy as np -from test.test_pipeline.ignored_warnings import ignore_warnings, classifier_warnings - class BaseClassificationComponentTest(unittest.TestCase): # Magic command to not run tests on base class @@ -174,18 +172,16 @@ def test_default_digits_multilabel(self): if not self.module.get_properties()["handles_multilabel"]: return - for _ in range(2): - predictions, targets, _ = _test_classifier( - classifier=self.module, dataset='digits', make_multilabel=True - ) - - score = sklearn.metrics.precision_score( - targets, predictions, average='macro', zero_division=0 - ) - self.assertAlmostEqual( - self.res["default_digits_multilabel"], score, - places=self.res.get("default_digits_multilabel_places", 7) - ) + for i in range(2): + predictions, targets, _ = \ + _test_classifier(classifier=self.module, + dataset='digits', + make_multilabel=True) + self.assertAlmostEqual(self.res["default_digits_multilabel"], + sklearn.metrics.precision_score( + targets, predictions, average='macro'), + places=self.res.get( + "default_digits_multilabel_places", 7)) def test_default_digits_multilabel_predict_proba(self): @@ -276,8 +272,7 @@ def is_unset_param_raw_predictions_val_error(err): + " assignment" in err.args[0]) try: - with ignore_warnings(classifier_warnings): - model.fit(X.copy(), y.copy()) + model.fit(X.copy(), y.copy()) except ValueError as e: if is_AdaBoostClassifier_error(e) or is_QDA_error(e): return None diff --git a/test/test_pipeline/components/data_preprocessing/test_balancing.py b/test/test_pipeline/components/data_preprocessing/test_balancing.py index 268a8ea542..56a3dae3b1 100644 --- a/test/test_pipeline/components/data_preprocessing/test_balancing.py +++ b/test/test_pipeline/components/data_preprocessing/test_balancing.py @@ -108,7 +108,9 @@ def test_weighting_effect(self): default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy - classifier = SimpleClassificationPipeline(config=default, **model_args) + classifier = SimpleClassificationPipeline( + config=default, **model_args + ) classifier.fit(X_train, Y_train) predictions1 = classifier.predict(X_test) @@ -124,7 +126,9 @@ def test_weighting_effect(self): X_test = data_[0][100:] Y_test = data_[1][100:] - classifier = SimpleClassificationPipeline(config=default, **model_args) + classifier = SimpleClassificationPipeline( + config=default, **model_args + ) Xt, fit_params = classifier.fit_transformer(X_train, Y_train) classifier.fit_estimator(Xt, Y_train, **fit_params) @@ -153,7 +157,8 @@ def test_weighting_effect(self): include = {'classifier': ['sgd'], 'feature_preprocessor': [name]} - classifier = SimpleClassificationPipeline(random_state=1, include=include) + classifier = SimpleClassificationPipeline( + random_state=1, include=include) cs = classifier.get_hyperparameter_search_space() default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy @@ -172,7 +177,8 @@ def test_weighting_effect(self): Y_test = data_[1][100:] default._values['balancing:strategy'] = strategy - classifier = SimpleClassificationPipeline(default, random_state=1, include=include) + classifier = SimpleClassificationPipeline( + default, random_state=1, include=include) Xt, fit_params = classifier.fit_transformer(X_train, Y_train) classifier.fit_estimator(Xt, Y_train, **fit_params) predictions = classifier.predict(X_test) diff --git a/test/test_pipeline/components/data_preprocessing/test_categorical_imputation.py b/test/test_pipeline/components/data_preprocessing/test_categorical_imputation.py index 2767093179..dffa763397 100644 --- a/test/test_pipeline/components/data_preprocessing/test_categorical_imputation.py +++ b/test/test_pipeline/components/data_preprocessing/test_categorical_imputation.py @@ -34,16 +34,15 @@ def test_default_imputation(input_data_imputation, categorical): X = X.astype('str').astype('object') X[mask] = np.nan else: - imputation_value = min(np.unique(X)) - 1 - + imputation_value = 0 Y = CategoricalImputation().fit_transform(X.copy()) - - assert np.array_equal(Y == imputation_value, mask) - assert np.array_equal(Y != imputation_value, ~mask) + assert ((np.argwhere(Y == imputation_value) == np.argwhere(mask)).all()) + assert ((np.argwhere(Y != imputation_value) == np.argwhere(np.logical_not(mask))).all()) @pytest.mark.parametrize('format_type', ('numpy', 'pandas')) def test_nonzero_numerical_imputation(format_type): + # First try with an array with 0 as only valid category. The imputation should # happen with -1 X = np.full(fill_value=np.nan, shape=(10, 10)) @@ -70,9 +69,8 @@ def test_nonzero_numerical_imputation(format_type): @pytest.mark.parametrize('input_data_imputation', ('numpy'), indirect=True) def test_default_sparse(input_data_imputation): X, mask = input_data_imputation - X = sparse.csr_matrix(X) + X = sparse.csc_matrix(X) Y = CategoricalImputation().fit_transform(X) Y = Y.todense() - - np.testing.assert_equal(Y == 0, mask) - np.testing.assert_equal(Y != 0, ~mask) + assert (np.argwhere(Y == 0) == np.argwhere(mask)).all() + assert (np.argwhere(Y != 0) == np.argwhere(np.logical_not(mask))).all() diff --git a/test/test_pipeline/components/data_preprocessing/test_data_preprocessing_categorical.py b/test/test_pipeline/components/data_preprocessing/test_data_preprocessing_categorical.py index dbffe26f51..902ff1c9b3 100644 --- a/test/test_pipeline/components/data_preprocessing/test_data_preprocessing_categorical.py +++ b/test/test_pipeline/components/data_preprocessing/test_data_preprocessing_categorical.py @@ -2,8 +2,6 @@ import numpy as np from scipy import sparse -import pytest - from autosklearn.pipeline.components.data_preprocessing.feature_type_categorical \ import CategoricalPreprocessingPipeline @@ -99,11 +97,3 @@ def test_transform_with_coalescence(self): # Consistency check: Y2t = CPPL.transform(X) np.testing.assert_array_equal(Y1t, Y2t) - - @pytest.mark.xfail(reason=( - "Encoding step does not support sparse matrices to convert negative labels to" - " positive ones as it does with non-sparse matrices" - )) - def test_transform_with_sparse_column_with_negative_labels(self): - X = sparse.csr_matrix([[0], [-1]]) - CategoricalPreprocessingPipeline().fit_transform(X) diff --git a/test/test_pipeline/components/feature_preprocessing/test_kernel_pca.py b/test/test_pipeline/components/feature_preprocessing/test_kernel_pca.py index 19b1368a49..839b0df947 100644 --- a/test/test_pipeline/components/feature_preprocessing/test_kernel_pca.py +++ b/test/test_pipeline/components/feature_preprocessing/test_kernel_pca.py @@ -1,5 +1,7 @@ import unittest +import pytest + from sklearn.linear_model import RidgeClassifier from autosklearn.pipeline.components.feature_preprocessing.kernel_pca import \ KernelPCA @@ -23,6 +25,7 @@ def test_default_configuration_sparse(self): self.assertEqual(transformation.shape[0], original.shape[0]) self.assertFalse((transformation == 0).all()) + @pytest.mark.flaky() def test_default_configuration_classify(self): for i in range(5): X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', diff --git a/test/test_pipeline/components/feature_preprocessing/test_liblinear.py b/test/test_pipeline/components/feature_preprocessing/test_liblinear.py index 19b56b6eac..eb4b715ce9 100644 --- a/test/test_pipeline/components/feature_preprocessing/test_liblinear.py +++ b/test/test_pipeline/components/feature_preprocessing/test_liblinear.py @@ -5,15 +5,10 @@ get_dataset import sklearn.metrics -from test.test_pipeline.ignored_warnings import ignore_warnings, feature_preprocessing_warnings - class LiblinearComponentTest(PreprocessingTestCase): - def test_default_configuration(self): - with ignore_warnings(feature_preprocessing_warnings): - transformation, original = _test_preprocessing(LibLinear_Preprocessor) - + transformation, original = _test_preprocessing(LibLinear_Preprocessor) self.assertEqual(transformation.shape[0], original.shape[0]) self.assertFalse((transformation == 0).all()) @@ -28,10 +23,7 @@ def test_default_configuration_classify(self): for hp_name in default if default[ hp_name] is not None}) - - with ignore_warnings(feature_preprocessing_warnings): - preprocessor.fit(X_train, Y_train) - + preprocessor.fit(X_train, Y_train) X_train_trans = preprocessor.transform(X_train) X_test_trans = preprocessor.transform(X_test) @@ -43,6 +35,6 @@ def test_default_configuration_classify(self): self.assertAlmostEqual(accuracy, 0.8548876745598057, places=2) def test_preprocessing_dtype(self): - - with ignore_warnings(feature_preprocessing_warnings): - super()._test_preprocessing_dtype(LibLinear_Preprocessor, test_sparse=False) + super(LiblinearComponentTest, + self)._test_preprocessing_dtype(LibLinear_Preprocessor, + test_sparse=False) diff --git a/test/test_pipeline/components/regression/test_base.py b/test/test_pipeline/components/regression/test_base.py index 8ffc1d23fe..32bf956557 100644 --- a/test/test_pipeline/components/regression/test_base.py +++ b/test/test_pipeline/components/regression/test_base.py @@ -1,20 +1,13 @@ -from typing import Type, Container - import unittest -import pytest - import numpy as np import sklearn.metrics -from autosklearn.pipeline.util import _test_regressor, _test_regressor_iterative_fit +from autosklearn.pipeline.util import _test_regressor, \ + _test_regressor_iterative_fit from autosklearn.pipeline.constants import SPARSE from autosklearn.pipeline.components.regression.libsvm_svr import LibSVM_SVR -from autosklearn.pipeline.components.regression import _regressors, RegressorChoice - -from test.test_pipeline.ignored_warnings import regressor_warnings, ignore_warnings - class BaseRegressionComponentTest(unittest.TestCase): @@ -34,36 +27,35 @@ def test_default_boston(self): return for _ in range(2): + predictions, targets, n_calls = _test_regressor( + dataset="boston", Regressor=self.module + ) - with ignore_warnings(regressor_warnings): - predictions, targets, n_calls = _test_regressor( - dataset="boston", - Regressor=self.module - ) - - score = sklearn.metrics.r2_score(y_true=targets, y_pred=predictions) - - # Special treatment for Gaussian Process Regression if "default_boston_le_ge" in self.res: - upper, lower = self.res["default_boston_le_ge"] - assert lower <= score <= upper - + # Special treatment for Gaussian Process Regression + self.assertLessEqual( + sklearn.metrics.r2_score(y_true=targets, y_pred=predictions), + self.res["default_boston_le_ge"][0] + ) + self.assertGreaterEqual( + sklearn.metrics.r2_score(y_true=targets, y_pred=predictions), + self.res["default_boston_le_ge"][1] + ) else: + score = sklearn.metrics.r2_score(targets, predictions) fixture = self.res["default_boston"] - places = self.res.get("default_boston_places", 7) - if score < -1e10: + print(f"score = {score}, fixture = {fixture}") score = np.log(-score) fixture = np.log(-fixture) + self.assertAlmostEqual( + fixture, + score, + places=self.res.get("default_boston_places", 7), + ) - self.assertAlmostEqual(fixture, score, places) - - if "boston_n_calls" in self.res: - expected = self.res["boston_n_calls"] - if isinstance(expected, Container): - assert n_calls in expected - else: - assert n_calls == expected + if self.res.get("boston_n_calls"): + self.assertEqual(self.res["boston_n_calls"], n_calls) def test_default_boston_iterative_fit(self): @@ -74,36 +66,28 @@ def test_default_boston_iterative_fit(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, regressor = _test_regressor_iterative_fit( - dataset="boston", - Regressor=self.module - ) - + predictions, targets, regressor = \ + _test_regressor_iterative_fit(dataset="boston", + Regressor=self.module) score = sklearn.metrics.r2_score(targets, predictions) fixture = self.res["default_boston_iterative"] - places = self.res.get("default_boston_iterative_places", 7) if score < -1e10: print(f"score = {score}, fixture = {fixture}") score = np.log(-score) fixture = np.log(-fixture) - self.assertAlmostEqual(fixture, score, places) + self.assertAlmostEqual( + fixture, + score, + places=self.res.get("default_boston_iterative_places", 7), + ) if self.step_hyperparameter is not None: - param_name = self.step_hyperparameter['name'] - default = self.step_hyperparameter['value'] - - value = getattr(regressor.estimator, param_name) - expected = self.res.get("boston_iterative_n_iter", default) - - # To currently allow for MLPRegressor which is indeterministic, - # we can have multiple values - if isinstance(expected, Container): - assert value in expected - else: - assert value == expected + self.assertEqual( + getattr(regressor.estimator, self.step_hyperparameter['name']), + self.res.get("boston_iterative_n_iter", self.step_hyperparameter['value']) + ) def test_default_boston_iterative_sparse_fit(self): @@ -117,12 +101,10 @@ def test_default_boston_iterative_sparse_fit(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, _ = _test_regressor_iterative_fit( - dataset="boston", - Regressor=self.module, - sparse=True - ) + predictions, targets, _ = \ + _test_regressor_iterative_fit(dataset="boston", + Regressor=self.module, + sparse=True) self.assertAlmostEqual(self.res["default_boston_iterative_sparse"], sklearn.metrics.r2_score(targets, predictions), @@ -138,13 +120,10 @@ def test_default_boston_sparse(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, _ = _test_regressor( - dataset="boston", - Regressor=self.module, - sparse=True - ) - + predictions, targets, _ = \ + _test_regressor(dataset="boston", + Regressor=self.module, + sparse=True) self.assertAlmostEqual(self.res["default_boston_sparse"], sklearn.metrics.r2_score(targets, predictions), @@ -157,11 +136,9 @@ def test_default_diabetes(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, n_calls = _test_regressor( - dataset="diabetes", - Regressor=self.module - ) + predictions, targets, n_calls = \ + _test_regressor(dataset="diabetes", + Regressor=self.module) self.assertAlmostEqual(self.res["default_diabetes"], sklearn.metrics.r2_score(targets, @@ -181,12 +158,9 @@ def test_default_diabetes_iterative_fit(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, _ = _test_regressor_iterative_fit( - dataset="diabetes", - Regressor=self.module - ) - + predictions, targets, _ = \ + _test_regressor_iterative_fit(dataset="diabetes", + Regressor=self.module) self.assertAlmostEqual(self.res["default_diabetes_iterative"], sklearn.metrics.r2_score(targets, predictions), @@ -205,13 +179,10 @@ def test_default_diabetes_iterative_sparse_fit(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, regressor = _test_regressor_iterative_fit( - dataset="diabetes", - Regressor=self.module, - sparse=True - ) - + predictions, targets, regressor = \ + _test_regressor_iterative_fit(dataset="diabetes", + Regressor=self.module, + sparse=True) self.assertAlmostEqual(self.res["default_diabetes_iterative_sparse"], sklearn.metrics.r2_score(targets, predictions), @@ -233,13 +204,10 @@ def test_default_diabetes_sparse(self): return for i in range(2): - with ignore_warnings(regressor_warnings): - predictions, targets, _ = _test_regressor( - dataset="diabetes", - Regressor=self.module, - sparse=True - ) - + predictions, targets, _ = \ + _test_regressor(dataset="diabetes", + Regressor=self.module, + sparse=True) self.assertAlmostEqual(self.res["default_diabetes_sparse"], sklearn.metrics.r2_score(targets, predictions), @@ -289,16 +257,12 @@ def test_module_idempotent(self): # Get the parameters on the first and second fit with config params # Also compare their random state - with ignore_warnings(regressor_warnings): - params_first = regressor.fit(X.copy(), y.copy()).estimator.get_params() - + params_first = regressor.fit(X.copy(), y.copy()).estimator.get_params() if hasattr(regressor.estimator, 'random_state'): rs_1 = regressor.random_state rs_estimator_1 = regressor.estimator.random_state - with ignore_warnings(regressor_warnings): - params_second = regressor.fit(X.copy(), y.copy()).estimator.get_params() - + params_second = regressor.fit(X.copy(), y.copy()).estimator.get_params() if hasattr(regressor.estimator, 'random_state'): rs_2 = regressor.random_state rs_estimator_2 = regressor.estimator.random_state @@ -322,138 +286,3 @@ def test_module_idempotent(self): seed == random_state for random_state in [rs_1, rs_estimator_1, rs_2, rs_estimator_2] ]) - - -@pytest.mark.parametrize("regressor", _regressors.values()) -@pytest.mark.parametrize("X", [np.array([[1, 2, 3]] * 20)]) -@pytest.mark.parametrize("y", [np.array([1] * 20)]) -def test_fit_and_predict_with_1d_targets_as_1d( - regressor: Type[RegressorChoice], - X: np.ndarray, - y: np.ndarray -) -> None: - """Test that all pipelines work with 1d target types - - Parameters - ---------- - regressor: RegressorChoice - The regressor to test - - X: np.ndarray - The features - - y: np.ndarray - The 1d targets - - Expects - ------- - * Should be able to fit with 1d targets - * Should be able to predict with 1d targest - * Should have predictions with the same shape as y - """ - assert len(X) == len(y) - assert y.ndim == 1 - - config_space = regressor.get_hyperparameter_search_space() - default_config = config_space.get_default_configuration() - - model = regressor(random_state=0, **default_config) - - with ignore_warnings(regressor_warnings): - model.fit(X, y) - - predictions = model.predict(X) - - assert predictions.shape == y.shape - - -@pytest.mark.parametrize("regressor", _regressors.values()) -@pytest.mark.parametrize("X", [np.array([[1, 2, 3]] * 20)]) -@pytest.mark.parametrize("y", [np.array([[1]] * 20)]) -def test_fit_and_predict_with_1d_targets_as_2d( - regressor: Type[RegressorChoice], - X: np.ndarray, - y: np.ndarray -) -> None: - """Test that all pipelines work with 1d target types when they are wrapped as 2d - - Parameters - ---------- - regressor: RegressorChoice - The regressor to test - - X: np.ndarray - The features - - y: np.ndarray - The 1d targets wrapped as 2d - - Expects - ------- - * Should be able to fit with 1d targets wrapped in 2d - * Should be able to predict 1d targets wrapped in 2d - * Should return 1d predictions - * Should have predictions with the same length as the y - """ - assert len(X) == len(y) - assert y.ndim == 2 and y.shape[1] == 1 - - config_space = regressor.get_hyperparameter_search_space() - default_config = config_space.get_default_configuration() - - model = regressor(random_state=0, **default_config) - - with ignore_warnings(regressor_warnings): - model.fit(X, y) - - predictions = model.predict(X) - - assert predictions.ndim == 1 - assert len(predictions) == len(y) - - -@pytest.mark.parametrize("regressor", [ - regressor - for regressor in _regressors.values() - if regressor.get_properties()['handles_multilabel'] -]) -@pytest.mark.parametrize("X", [np.array([[1, 2, 3]] * 20)]) -@pytest.mark.parametrize("y", [np.array([[1, 1, 1]] * 20)]) -def test_fit_and_predict_with_2d_targets( - regressor: Type[RegressorChoice], - X: np.ndarray, - y: np.ndarray -) -> None: - """Test that all pipelines work with 2d target types - - Parameters - ---------- - regressor: RegressorChoice - The regressor to test - - X: np.ndarray - The features - - y: np.ndarray - The 2d targets - - Expects - ------- - * Should be able to fit with 2d targets - * Should be able to predict with 2d targets - * Should have predictions with the same shape as y - """ - assert len(X) == len(y) - assert y.ndim == 2 and y.shape[1] > 1 - - config_space = regressor.get_hyperparameter_search_space() - default_config = config_space.get_default_configuration() - - model = regressor(random_state=0, **default_config) - - with ignore_warnings(regressor_warnings): - model.fit(X, y) - - predictions = model.predict(X) - - assert predictions.shape == y.shape diff --git a/test/test_pipeline/components/regression/test_mlp.py b/test/test_pipeline/components/regression/test_mlp.py index c003037c76..e3843d2197 100644 --- a/test/test_pipeline/components/regression/test_mlp.py +++ b/test/test_pipeline/components/regression/test_mlp.py @@ -1,5 +1,3 @@ -from typing import Any, Dict - import sklearn.neural_network from autosklearn.pipeline.components.regression.mlp import MLPRegressor @@ -24,36 +22,21 @@ class MLPComponentTest(BaseRegressionComponentTest): # # These seem to have consistent CPU's so I'm unsure what the underlying reason # for this to randomly fail only sometimes on Github runners - # - # Edit: If changing, please tracke what values were failing - # - # Seems there is a consistently different values for boston so: - # * include two valuess for n_iter in 'boston_iterative_n_iter' - # known-values = [236, 331] - # - # * decreased places from 6 -> 5 in 'default_boston_{sparse,_iterative_sparse}' - # to check for for iterations and expanded the default places for checking - # know-values = [-0.10972947168054104, -0.10973142976866268] - # - # * decreased places from 3 -> 1 in 'default_boston_places' - # known-values = [0.29521793994422807, 0.2750079862455884] - # - # * Include two value for 'boston_n_calls' - # known-values = [8, 9] __test__ = True + __test__ = True - res: Dict[str, Any] = {} + res = dict() res["default_boston"] = 0.2750079862455884 - res["default_boston_places"] = 1 - res["boston_n_calls"] = [8, 9] - res["boston_iterative_n_iter"] = [236, 331] + res["default_boston_places"] = 3 + res["boston_n_calls"] = 8 + res["boston_iterative_n_iter"] = 236 res["default_boston_iterative"] = res["default_boston"] res["default_boston_iterative_places"] = 1 res["default_boston_sparse"] = -0.10972947168054104 - res["default_boston_sparse_places"] = 5 + res["default_boston_sparse_places"] = 6 res["default_boston_iterative_sparse"] = res["default_boston_sparse"] - res["default_boston_iterative_sparse_places"] = res["default_boston_sparse_places"] + res["default_boston_iterative_sparse_places"] = 6 res["default_diabetes"] = 0.35917389841850555 res["diabetes_n_calls"] = 9 res["diabetes_iterative_n_iter"] = 435 diff --git a/test/test_pipeline/ignored_warnings.py b/test/test_pipeline/ignored_warnings.py deleted file mode 100644 index 5b941281f9..0000000000 --- a/test/test_pipeline/ignored_warnings.py +++ /dev/null @@ -1,117 +0,0 @@ -from contextlib import contextmanager -from typing import List, Iterator, Tuple - -import warnings - -from sklearn.exceptions import ConvergenceWarning - - -regressor_warnings = [ - ( - UserWarning, ( # From QuantileTransformer - r"n_quantiles \(\d+\) is greater than the total number of samples \(\d+\)\." - r" n_quantiles is set to n_samples\." - ) - ), - ( - ConvergenceWarning, ( # From GaussianProcesses - r"The optimal value found for dimension \d+ of parameter \w+ is close" - r" to the specified (upper|lower) bound .*(Increasing|Decreasing) the bound" - r" and calling fit again may find a better value." - ) - ), - ( - UserWarning, ( # From FastICA - r"n_components is too large: it will be set to \d+" - ) - ), - ( - ConvergenceWarning, ( # From SGD - r"Maximum number of iteration reached before convergence\. Consider increasing" - r" max_iter to improve the fit\." - ) - ), - ( - ConvergenceWarning, ( # From MLP - r"Stochastic Optimizer: Maximum iterations \(\d+\) reached and the" - r" optimization hasn't converged yet\." - ) - ), -] - -classifier_warnings = [ - ( - UserWarning, ( # From QuantileTransformer - r"n_quantiles \(\d+\) is greater than the total number of samples \(\d+\)\." - r" n_quantiles is set to n_samples\." - ) - ), - ( - UserWarning, ( # From FastICA - r"n_components is too large: it will be set to \d+" - ) - - ), - ( - ConvergenceWarning, ( # From Liblinear - r"Liblinear failed to converge, increase the number of iterations\." - ) - ), - ( - ConvergenceWarning, ( # From SGD - r"Maximum number of iteration reached before convergence\. Consider increasing" - r" max_iter to improve the fit\." - ) - ), - ( - ConvergenceWarning, ( # From MLP - r"Stochastic Optimizer: Maximum iterations \(\d+\) reached and the" - r" optimization hasn't converged yet\." - ) - ), - ( - ConvergenceWarning, ( # From FastICA - r"FastICA did not converge\." - r" Consider increasing tolerance or the maximum number of iterations\." - ) - ), - ( - UserWarning, ( # From LDA (Linear Discriminant Analysis) - r"Variables are collinear" - ) - ), - ( - UserWarning, ( - r"Clustering metrics expects discrete values but received continuous values" - r" for label, and multiclass values for target" - ) - ) -] - -feature_preprocessing_warnings = [ - ( - ConvergenceWarning, ( # From liblinear - r"Liblinear failed to converge, increase the number of iterations." - ) - ) -] - -ignored_warnings = regressor_warnings + classifier_warnings + feature_preprocessing_warnings - - -@contextmanager -def ignore_warnings(to_ignore: List[Tuple[Exception, str]] = ignored_warnings) -> Iterator[None]: - """A context manager to ignore warnings - - >>> with ignore_warnings(classifier_warnings): - >>> ... - - Parameters - ---------- - to_ignore: List[Tuple[Exception, str]] = ignored_warnings - The list of warnings to ignore, defaults to all registered warnings - """ - with warnings.catch_warnings(): - for category, message in to_ignore: - warnings.filterwarnings('ignore', category=category, message=message) - yield diff --git a/test/test_pipeline/test_classification.py b/test/test_pipeline/test_classification.py index 44caaecb9b..d5864f14cd 100644 --- a/test/test_pipeline/test_classification.py +++ b/test/test_pipeline/test_classification.py @@ -1,10 +1,9 @@ -from typing import Any, Dict, Union - import copy import itertools import os import resource import tempfile +import traceback import unittest import unittest.mock @@ -32,8 +31,6 @@ from autosklearn.pipeline.constants import \ DENSE, SPARSE, UNSIGNED_DATA, PREDICTIONS, SIGNED_DATA, INPUT -from test.test_pipeline.ignored_warnings import classifier_warnings, ignore_warnings - class DummyClassifier(AutoSklearnClassificationAlgorithm): @staticmethod @@ -105,12 +102,6 @@ class SimpleClassificationPipelineTest(unittest.TestCase): _multiprocess_can_split_ = True def test_io_dict(self): - """Test for the properties of classifier components - - Expects - ------- - * All required properties are stated in class `get_properties()` - """ classifiers = classification_components._classifiers for c in classifiers: if classifiers[c] == classification_components.ClassifierChoice: @@ -133,13 +124,6 @@ def test_io_dict(self): self.assertIn('handles_multilabel', props) def test_find_classifiers(self): - """Test that the classifier components can be found - - Expects - ------- - * At least two classifier components can be found - * They inherit from AutoSklearnClassificationAlgorithm - """ classifiers = classification_components._classifiers self.assertGreaterEqual(len(classifiers), 2) for key in classifiers: @@ -148,13 +132,6 @@ def test_find_classifiers(self): self.assertIn(AutoSklearnClassificationAlgorithm, classifiers[key].__bases__) def test_find_preprocessors(self): - """Test that preproccesor components can be found - - Expects - ------- - * At least 1 preprocessor component can be found - * The inherit from AutoSklearnPreprocessingAlgorithm - """ preprocessors = preprocessing_components._preprocessors self.assertGreaterEqual(len(preprocessors), 1) for key in preprocessors: @@ -163,98 +140,54 @@ def test_find_preprocessors(self): self.assertIn(AutoSklearnPreprocessingAlgorithm, preprocessors[key].__bases__) def test_default_configuration(self): - """Test that seeded SimpleClassificaitonPipeline returns good results on iris - - Expects - ------- - * The performance of configuration with fixed seed gets above 96% accuracy on iris - """ - X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') - - auto = SimpleClassificationPipeline(random_state=1) - - with ignore_warnings(classifier_warnings): + for i in range(2): + X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') + auto = SimpleClassificationPipeline(random_state=1) auto = auto.fit(X_train, Y_train) - - predictions = auto.predict(X_test) - - acc = sklearn.metrics.accuracy_score(predictions, Y_test) - self.assertAlmostEqual(0.96, acc) + predictions = auto.predict(X_test) + self.assertAlmostEqual(0.96, sklearn.metrics.accuracy_score(predictions, Y_test)) + auto.predict_proba(X_test) def test_default_configuration_multilabel(self): - """Test that SimpleClassificationPipeline default config returns good results on - a multilabel version of iris. - - Expects - ------- - * The performance of a random configuratino gets above 96% on a multilabel - version of iris - """ - X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris', make_multilabel=True) - - classifier = SimpleClassificationPipeline( - dataset_properties={'multilabel': True}, - random_state=0 - ) - cs = classifier.get_hyperparameter_search_space() - - default = cs.get_default_configuration() - classifier.set_hyperparameters(default) - - with ignore_warnings(classifier_warnings): + for i in range(2): + classifier = SimpleClassificationPipeline( + random_state=1, + dataset_properties={'multilabel': True} + ) + cs = classifier.get_hyperparameter_search_space() + default = cs.get_default_configuration() + X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris', + make_multilabel=True) + classifier.set_hyperparameters(default) classifier = classifier.fit(X_train, Y_train) - - predictions = classifier.predict(X_test) - - acc = sklearn.metrics.accuracy_score(predictions, Y_test) - self.assertAlmostEqual(0.96, acc) + predictions = classifier.predict(X_test) + self.assertAlmostEqual(0.96, + sklearn.metrics.accuracy_score(predictions, + Y_test)) + classifier.predict_proba(X_test) def test_default_configuration_iterative_fit(self): - """Test that the SimpleClassificationPipeline default config for random forest - with no preprocessing can be iteratively fit on iris. - - Expects - ------- - * Random forest pipeline can be fit iteratively - * Test that its number of estimators is equal to the iteration count - """ - X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') - classifier = SimpleClassificationPipeline( + random_state=1, include={ 'classifier': ['random_forest'], 'feature_preprocessor': ['no_preprocessing'] - }, - random_state=0 + } ) + X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') classifier.fit_transformer(X_train, Y_train) - - with ignore_warnings(classifier_warnings): - for i in range(1, 11): - classifier.iterative_fit(X_train, Y_train) - n_estimators = classifier.steps[-1][-1].choice.estimator.n_estimators - self.assertEqual(n_estimators, i) + for i in range(1, 11): + classifier.iterative_fit(X_train, Y_train) + self.assertEqual( + classifier.steps[-1][-1].choice.estimator.n_estimators, i + ) def test_repr(self): - """Test that the default pipeline can be converted to its representation and - converted back. - - Expects - ------- - * The the SimpleClassificationPipeline has a repr - * This repr can be evaluated back to an instance of SimpleClassificationPipeline - """ representation = repr(SimpleClassificationPipeline()) cls = eval(representation) self.assertIsInstance(cls, SimpleClassificationPipeline) def test_multilabel(self): - """Test non-seeded configurations for multi-label data - - Expects - ------- - * All configurations should fit, predict and predict_proba successfully - """ cache = Memory(location=tempfile.gettempdir()) cached_func = cache.cache( sklearn.datasets.make_multilabel_classification @@ -271,179 +204,110 @@ def test_multilabel(self): return_distributions=False, random_state=1 ) + X_train = X[:100, :] + Y_train = Y[:100, :] + X_test = X[101:, :] + Y_test = Y[101:, ] - data = { - 'X_train': X[:100, :], - 'Y_train': Y[:100, :], - 'X_test': X[101:, :], - 'Y_test': Y[101:, ] - } + data = {'X_train': X_train, 'Y_train': Y_train, + 'X_test': X_test, 'Y_test': Y_test} - pipeline = SimpleClassificationPipeline(dataset_properties={"multilabel": True}) - cs = pipeline.get_hyperparameter_search_space() - self._test_configurations(configurations_space=cs, dataset=data) + dataset_properties = {'multilabel': True} + cs = SimpleClassificationPipeline(dataset_properties=dataset_properties).\ + get_hyperparameter_search_space() + self._test_configurations(configurations_space=cs, data=data) def test_configurations(self): - """Tests a non-seeded random set of configurations with default dataset properties - - Expects - ------- - * All configurations should fit, predict and predict_proba successfully - """ cls = SimpleClassificationPipeline() cs = cls.get_hyperparameter_search_space() self._test_configurations(configurations_space=cs) def test_configurations_signed_data(self): - """Tests a non-seeded random set of configurations with signed data - - Expects - ------- - * All configurations should fit, predict and predict_proba successfully - """ dataset_properties = {'signed': True} + cs = SimpleClassificationPipeline(dataset_properties=dataset_properties)\ + .get_hyperparameter_search_space() - cls = SimpleClassificationPipeline(dataset_properties=dataset_properties) - cs = cls.get_hyperparameter_search_space() - - self._test_configurations(configurations_space=cs, dataset_properties=dataset_properties) + self._test_configurations(configurations_space=cs, + dataset_properties=dataset_properties) def test_configurations_sparse(self): - """Tests a non-seeded random set of configurations with sparse data - - Expects - ------- - * All configurations should fit, predict and predict_proba successfully - """ - pipeline = SimpleClassificationPipeline(dataset_properties={'sparse': True}) - cs = pipeline.get_hyperparameter_search_space() + cs = SimpleClassificationPipeline(dataset_properties={'sparse': True}).\ + get_hyperparameter_search_space() self._test_configurations(configurations_space=cs, make_sparse=True) def test_configurations_categorical_data(self): - """Tests a non-seeded random set of configurations with sparse, mixed data - - Loads specific data from /components/data_preprocessing/dataset.pkl - - Expects - ------- - * All configurations should fit, predict and predict_proba successfully - """ - pipeline = SimpleClassificationPipeline( + cs = SimpleClassificationPipeline( dataset_properties={'sparse': False}, + random_state=1, include={ 'feature_preprocessor': ['no_preprocessing'], 'classifier': ['sgd', 'adaboost'] } - ) - - cs = pipeline.get_hyperparameter_search_space() - - categorical_columns = [ - True, True, True, False, False, True, True, True, False, True, True, True, True, - True, True, True, True, True, True, True, True, True, True, True, True, True, - True, True, True, True, True, True, False, False, False, True, True, True - ] - categorical = { - i: 'categorical' if is_categorical else 'numerical' - for i, is_categorical in enumerate(categorical_columns) - } - - here = os.path.dirname(__file__) - dataset_path = os.path.join(here, "components", "data_preprocessing", "dataset.pkl") - - X = np.loadtxt(dataset_path) + ).get_hyperparameter_search_space() + + categorical = [True, True, True, False, False, True, True, True, + False, True, True, True, True, True, True, True, + True, True, True, True, True, True, True, True, True, + True, True, True, True, True, True, True, False, + False, False, True, True, True] + categorical = {i: 'categorical' if bool_cat else 'numerical' + for i, bool_cat in enumerate(categorical)} + this_directory = os.path.dirname(__file__) + X = np.loadtxt(os.path.join(this_directory, "components", + "data_preprocessing", "dataset.pkl")) y = X[:, -1].copy() X = X[:, :-1] - X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X, y) + X_train, X_test, Y_train, Y_test = \ + sklearn.model_selection.train_test_split(X, y) + data = {'X_train': X_train, 'Y_train': Y_train, + 'X_test': X_test, 'Y_test': Y_test} - data = {'X_train': X_train, 'Y_train': Y_train, 'X_test': X_test, 'Y_test': Y_test} - - init_params = {'data_preprocessor:feat_type': categorical} + init_params = { + 'data_preprocessor:feat_type': categorical + } - self._test_configurations(configurations_space=cs, dataset=data, init_params=init_params) + self._test_configurations(configurations_space=cs, make_sparse=True, + data=data, init_params=init_params) @unittest.mock.patch('autosklearn.pipeline.components.data_preprocessing' '.DataPreprocessorChoice.set_hyperparameters') def test_categorical_passed_to_one_hot_encoder(self, ohe_mock): - """Test that the feat_types arg is passed to the OneHotEncoder - - Expects - ------- - * Construction of SimpleClassificationPipeline to pass init_params correctly - to the OneHotEncoder - - * Setting the pipeline's hyperparameters after construction also correctly - sets the init params of the OneHotEncoder - """ # Mock the _check_init_params_honored as there is no object created, # _check_init_params_honored will fail as a datapreprocessor was never created with unittest.mock.patch('autosklearn.pipeline.classification.SimpleClassificationPipeline' '._check_init_params_honored'): - - # Check through construction - feat_types = {0: 'categorical', 1: 'numerical'} - cls = SimpleClassificationPipeline( - init_params={'data_preprocessor:feat_type': feat_types} + init_params={'data_preprocessor:feat_type': {0: 'categorical', + 1: 'numerical'}} ) - init_args = ohe_mock.call_args[1]['init_params'] - self.assertEqual(init_args, {'feat_type': feat_types}) - - # Check through `set_hyperparameters` - feat_types = {0: 'categorical', 1: 'categorical', 2: 'numerical'} - + self.assertEqual( + ohe_mock.call_args[1]['init_params'], + {'feat_type': {0: 'categorical', 1: 'numerical'}} + ) default = cls.get_hyperparameter_search_space().get_default_configuration() cls.set_hyperparameters( configuration=default, - init_params={'data_preprocessor:feat_type': feat_types}, + init_params={'data_preprocessor:feat_type': {0: 'categorical', + 1: 'categorical', + 2: 'numerical'}}, + ) + self.assertEqual( + ohe_mock.call_args[1]['init_params'], + {'feat_type': {0: 'categorical', 1: 'categorical', + 2: 'numerical'}} ) - init_args = ohe_mock.call_args[1]['init_params'] - self.assertEqual(init_args, {'feat_type': feat_types}) - - def _test_configurations( - self, - configurations_space: ConfigurationSpace, - make_sparse: bool = False, - dataset: Union[str, Dict[str, Any]] = 'digits', - init_params: Dict[str, Any] = None, - dataset_properties: Dict[str, Any] = None, - n_samples: int = 10, - ): - """Tests a configuration space by taking multiple samples and fiting each - before calling predict and predict_proba. - - Parameters - ---------- - configurations_space: ConfigurationSpace - The configuration space to sample from - - make_sparse: bool = False - Whether to make the dataset sparse or not - - dataset: Union[str, Dict[str, Any]] = 'digits' - Either a dataset name or a dictionary as below. If given a str, it will - use `make_sparse` and add NaNs to the dataset. - - {'X_train': ..., 'Y_train': ..., 'X_test': ..., 'y_test': ...} - - init_params: Dict[str, Any] = None - A dictionary of initial parameters to give to the pipeline. - - dataset_properties: Dict[str, Any] - A dictionary of properties describing the dataset - - n_samples: int = 10 - How many configurations to sample - """ + def _test_configurations(self, configurations_space, make_sparse=False, + data=None, init_params=None, + dataset_properties=None): # Use a limit of ~3GiB limit = 3072 * 1024 * 1024 resource.setrlimit(resource.RLIMIT_AS, (limit, limit)) - for i in range(n_samples): + for i in range(10): config = configurations_space.sample_configuration() config._populate_values() @@ -464,29 +328,26 @@ def _test_configurations( 'feature_preprocessor:feature_agglomeration:n_clusters': 2, 'classifier:gradient_boosting:max_leaf_nodes': 64} - config._values.update({ - param: value - for param, value in restrictions.items() - if param in config and config[param] is not None - }) + for restrict_parameter in restrictions: + restrict_to = restrictions[restrict_parameter] + if restrict_parameter in config and \ + config[restrict_parameter] is not None: + config._values[restrict_parameter] = restrict_to - if isinstance(dataset, str): + if data is None: X_train, Y_train, X_test, Y_test = get_dataset( - dataset=dataset, - make_sparse=make_sparse, - add_NaNs=True - ) + dataset='digits', make_sparse=make_sparse, add_NaNs=True) else: - X_train = dataset['X_train'].copy() - Y_train = dataset['Y_train'].copy() - X_test = dataset['X_test'].copy() - dataset['Y_test'].copy() + X_train = data['X_train'].copy() + Y_train = data['Y_train'].copy() + X_test = data['X_test'].copy() + data['Y_test'].copy() init_params_ = copy.deepcopy(init_params) - cls = SimpleClassificationPipeline( + random_state=1, dataset_properties=dataset_properties, - init_params=init_params_ + init_params=init_params_, ) cls.set_hyperparameters(config, init_params=init_params_) @@ -498,8 +359,7 @@ def _test_configurations( check_is_fitted(step) try: - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) + cls.fit(X_train, Y_train) # After fit, all components should be tagged as fitted # by sklearn. Check is fitted raises an exception if that @@ -508,17 +368,19 @@ def _test_configurations( for name, step in cls.named_steps.items(): check_is_fitted(step) except sklearn.exceptions.NotFittedError: - self.fail(f"config={config} raised NotFittedError unexpectedly!") + self.fail("config={} raised NotFittedError unexpectedly!".format( + config + )) cls.predict(X_test.copy()) cls.predict_proba(X_test) - except MemoryError: continue except np.linalg.LinAlgError: continue except ValueError as e: - if "Floating-point under-/overflow occurred at epoch" in e.args[0]: + if "Floating-point under-/overflow occurred at epoch" in \ + e.args[0]: continue elif "removed all features" in e.args[0]: continue @@ -534,9 +396,9 @@ def _test_configurations( elif 'Internal work array size computation failed' in e.args[0]: continue else: - e.args += (f"config={config}",) + print(config) + print(traceback.format_exc()) raise e - except RuntimeWarning as e: if "invalid value encountered in sqrt" in e.args[0]: continue @@ -551,158 +413,114 @@ def _test_configurations( elif "invalid value encountered in multiply" in e.args[0]: continue else: - e.args += (f"config={config}",) + print(traceback.format_exc()) + print(config) raise e - except UserWarning as e: if "FastICA did not converge" in e.args[0]: continue else: - e.args += (f"config={config}",) + print(traceback.format_exc()) + print(config) raise e def test_get_hyperparameter_search_space(self): - """Test the configuration space returned by a SimpleClassificationPipeline - - Expects - ------- - * pipeline returns a configurations space - * 7 rescaling choices - * 16 classifier choices - * 13 features preprocessor choices - * 168 total hyperparameters - * (n_hyperparameters - 4) different conditionals for the pipeline - * 53 forbidden combinations - """ - pipeline = SimpleClassificationPipeline() - cs = pipeline.get_hyperparameter_search_space() + cs = SimpleClassificationPipeline().get_hyperparameter_search_space() self.assertIsInstance(cs, ConfigurationSpace) + conditions = cs.get_conditions() + forbiddens = cs.get_forbiddens() - rescale_param = 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__' - n_choices = len(cs.get_hyperparameter(rescale_param).choices) - self.assertEqual(n_choices, 7) - - n_classifiers = len(cs.get_hyperparameter('classifier:__choice__').choices) - self.assertEqual(n_classifiers, 16) - - n_preprocessors = len(cs.get_hyperparameter('feature_preprocessor:__choice__').choices) - self.assertEqual(n_preprocessors, 13) + param = 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__' + self.assertEqual(len(cs.get_hyperparameter(param).choices), 7) + self.assertEqual(len(cs.get_hyperparameter( + 'classifier:__choice__').choices), 16) + self.assertEqual(len(cs.get_hyperparameter( + 'feature_preprocessor:__choice__').choices), 13) hyperparameters = cs.get_hyperparameters() - self.assertEqual(len(hyperparameters), 168) + self.assertEqual(168, len(hyperparameters)) # for hp in sorted([str(h) for h in hyperparameters]): # print hp # The four components which are always active are classifier, # feature preprocessor, balancing and data preprocessing pipeline. - conditions = cs.get_conditions() self.assertEqual(len(hyperparameters) - 4, len(conditions)) - forbiddens = cs.get_forbiddens() self.assertEqual(len(forbiddens), 53) def test_get_hyperparameter_search_space_include_exclude_models(self): - """Test the configuration space when using include and exclude - - Expects - ------- - * Including a classifier choice has pipeline give back matching choice - * Excluding a classifier choice means it won't show up in the hyperparameter space - * Including a feature preprocessor has pipeline give back matching choice - * Excluding a feature preprocessor means it won't show up in the hyperparameter space - """ - # include a classifier choice - pipeline = SimpleClassificationPipeline(include={'classifier': ['libsvm_svc']}) - cs = pipeline.get_hyperparameter_search_space() - - expected = CategoricalHyperparameter('classifier:__choice__', ['libsvm_svc']) - returned = cs.get_hyperparameter('classifier:__choice__') - self.assertEqual(returned, expected) + cs = SimpleClassificationPipeline(include={'classifier': ['libsvm_svc']})\ + .get_hyperparameter_search_space() + self.assertEqual( + cs.get_hyperparameter('classifier:__choice__'), + CategoricalHyperparameter('classifier:__choice__', ['libsvm_svc']), + ) - # exclude a classifier choice - pipeline = SimpleClassificationPipeline(exclude={'classifier': ['libsvm_svc']}) - cs = pipeline.get_hyperparameter_search_space() + cs = SimpleClassificationPipeline(exclude={'classifier': ['libsvm_svc']}).\ + get_hyperparameter_search_space() self.assertNotIn('libsvm_svc', str(cs)) - # include a feature preprocessor - pipeline = SimpleClassificationPipeline( - include={'feature_preprocessor': ['select_percentile_classification']} - ) - cs = pipeline.get_hyperparameter_search_space() - - returned = cs.get_hyperparameter('feature_preprocessor:__choice__') - expected = CategoricalHyperparameter( - 'feature_preprocessor:__choice__', - ['select_percentile_classification'] - ) - self.assertEqual(returned, expected) + cs = SimpleClassificationPipeline( + include={'feature_preprocessor': ['select_percentile_classification']}).\ + get_hyperparameter_search_space() + fpp1 = cs.get_hyperparameter('feature_preprocessor:__choice__') + fpp2 = CategoricalHyperparameter( + 'feature_preprocessor:__choice__', ['select_percentile_classification']) + self.assertEqual(fpp1, fpp2) - # exclude a feature preprocessor - pipeline = SimpleClassificationPipeline( + cs = SimpleClassificationPipeline( exclude={'feature_preprocessor': ['select_percentile_classification']} - ) - cs = pipeline.get_hyperparameter_search_space() + ).get_hyperparameter_search_space() self.assertNotIn('select_percentile_classification', str(cs)) def test_get_hyperparameter_search_space_preprocessor_contradicts_default_classifier(self): - """Test that the default classifier gets updated based on the legal feature - preprocessors that come before. - - Expects - ------- - * With 'densifier' as only legal feature_preprocessor, 'qda' is default classifier - * With 'nystroem_sampler' as only legal feature_preprocessor, 'sgd' is default classifier - """ - pipeline = SimpleClassificationPipeline( + cs = SimpleClassificationPipeline( include={'feature_preprocessor': ['densifier']}, - dataset_properties={'sparse': True} + dataset_properties={'sparse': True}).\ + get_hyperparameter_search_space() + self.assertEqual(cs.get_hyperparameter( + 'classifier:__choice__').default_value, + 'qda' ) - cs = pipeline.get_hyperparameter_search_space() - - default_choice = cs.get_hyperparameter('classifier:__choice__').default_value - self.assertEqual(default_choice, 'qda') - pipeline = SimpleClassificationPipeline( - include={'feature_preprocessor': ['nystroem_sampler']} + cs = SimpleClassificationPipeline( + include={'feature_preprocessor': ['nystroem_sampler']}).\ + get_hyperparameter_search_space() + self.assertEqual(cs.get_hyperparameter( + 'classifier:__choice__').default_value, + 'sgd' ) - cs = pipeline.get_hyperparameter_search_space() - - default_choice = cs.get_hyperparameter('classifier:__choice__').default_value - self.assertEqual(default_choice, 'sgd') def test_get_hyperparameter_search_space_only_forbidden_combinations(self): - """Test that invalid pipeline configurations raise errors - - Expects - ------- - * 0 combinations are found with 'multinomial_nb' and 'pca' with 'sparse' data - * Classifiers that can handle sparse but located behind a 'densifier' should - raise that no legal default configuration can be found - """ - with self.assertRaisesRegex(AssertionError, "No valid pipeline found."): - SimpleClassificationPipeline( - include={ - 'classifier': ['multinomial_nb'], - 'feature_preprocessor': ['pca'] - }, - dataset_properties={'sparse': True} - ) + self.assertRaisesRegex( + AssertionError, + "No valid pipeline found.", + SimpleClassificationPipeline, + include={ + 'classifier': ['multinomial_nb'], + 'feature_preprocessor': ['pca'] + }, + dataset_properties={'sparse': True} + ) - with self.assertRaisesRegex(ValueError, "Cannot find a legal default configuration."): - SimpleClassificationPipeline( - include={ - 'classifier': ['liblinear_svc'], - 'feature_preprocessor': ['densifier'] - }, - dataset_properties={'sparse': True} - ) + # It must also be catched that no classifiers which can handle sparse + # data are located behind the densifier + self.assertRaisesRegex( + ValueError, + "Cannot find a legal default configuration.", + SimpleClassificationPipeline, + include={ + 'classifier': ['liblinear_svc'], + 'feature_preprocessor': ['densifier'] + }, + dataset_properties={'sparse': True} + ) @unittest.skip("Wait until ConfigSpace is fixed.") def test_get_hyperparameter_search_space_dataset_properties(self): cs_mc = SimpleClassificationPipeline.get_hyperparameter_search_space( - dataset_properties={'multiclass': True} - ) + dataset_properties={'multiclass': True}) self.assertNotIn('bernoulli_nb', str(cs_mc)) cs_ml = SimpleClassificationPipeline.get_hyperparameter_search_space( @@ -723,95 +541,51 @@ def test_get_hyperparameter_search_space_dataset_properties(self): self.assertEqual(cs_ml, cs_mc_ml) def test_predict_batched(self): - """Test that predict_proba predicts the same as the underlying classifier with - predict_proba argument `batches`. - - Expects - ------- - * Should expect the output shape to match that of the digits dataset - * Should expect a fixed call count each test run - * Should expect predict_proba with `batches` and predict_proba perform near identically - """ cls = SimpleClassificationPipeline(include={'classifier': ['sgd']}) # Multiclass X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') - - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - + cls.fit(X_train, Y_train) X_test_ = X_test.copy() prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) def test_predict_batched_sparse(self): - """Test that predict_proba predicts the same as the underlying classifier with - predict_proba argument `batches`, with a sparse dataset - - Expects - ------- - * Should expect the output shape to match that of the digits dataset - * Should expect a fixed call count each test run - * Should expect predict_proba with `batches` and predict_proba perform near identically - """ - cls = SimpleClassificationPipeline( - dataset_properties={'sparse': True}, - include={'classifier': ['sgd']} - ) + cls = SimpleClassificationPipeline(dataset_properties={'sparse': True}, + include={'classifier': ['sgd']}) # Multiclass - X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', make_sparse=True) - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - + X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', + make_sparse=True) + cls.fit(X_train, Y_train) X_test_ = X_test.copy() prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) def test_predict_proba_batched(self): - """Test that predict_proba predicts the same as the underlying classifier with - predict_proba argument `batches`, for multiclass and multilabel data. - - Expects - ------- - * Should expect the output shape to match that of the digits dataset - * Should expect a fixed call count each test run - * Should expect predict_proba with `batches` and predict_proba perform near identically - """ # Multiclass cls = SimpleClassificationPipeline(include={'classifier': ['sgd']}) X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - + cls.fit(X_train, Y_train) X_test_ = X_test.copy() prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) @@ -821,53 +595,33 @@ def test_predict_proba_batched(self): X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) for y in Y_train])) - - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - + cls.fit(X_train, Y_train) X_test_ = X_test.copy() prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) def test_predict_proba_batched_sparse(self): - """Test that predict_proba predicts the same as the underlying classifier with - predict_proba argument `batches`, for multiclass and multilabel data. - - Expects - ------- - * Should expect the output shape to match that of the digits dataset - * Should expect a fixed call count each test run - * Should expect predict_proba with `batches` and predict_proba perform near identically - """ + cls = SimpleClassificationPipeline( dataset_properties={'sparse': True, 'multiclass': True}, - include={'classifier': ['sgd']} - ) + include={'classifier': ['sgd']}) # Multiclass - X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', make_sparse=True) + X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', + make_sparse=True) + cls.fit(X_train, Y_train) X_test_ = X_test.copy() - - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) @@ -875,44 +629,26 @@ def test_predict_proba_batched_sparse(self): # Multilabel cls = SimpleClassificationPipeline( dataset_properties={'sparse': True, 'multilabel': True}, - include={'classifier': ['lda']} - ) - X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', make_sparse=True) - + include={'classifier': ['lda']}) + X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', + make_sparse=True) + Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)])) + for y in Y_train])) + cls.fit(X_train, Y_train) X_test_ = X_test.copy() - Y_train = np.array([[1 if i != y else 0 for i in range(10)] for y in Y_train]) - - with ignore_warnings(classifier_warnings): - cls.fit(X_train, Y_train) - prediction_ = cls.predict_proba(X_test_) - # The object behind the last step in the pipeline cls_predict = unittest.mock.Mock(wraps=cls.steps[-1][1].predict_proba) cls.steps[-1][-1].predict_proba = cls_predict - prediction = cls.predict_proba(X_test, batch_size=20) - self.assertEqual((1647, 10), prediction.shape) self.assertEqual(84, cls_predict.call_count) np.testing.assert_array_almost_equal(prediction_, prediction) def test_pipeline_clonability(self): - """Test that the pipeline item is clonable with `sklearn.clone` - - Expects - ------- - * The cloned object has all the same param keys - * The cloned object can be constructed from theses params - * The reconstructed clone and the original have the same param values - """ X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') - auto = SimpleClassificationPipeline() - - with ignore_warnings(classifier_warnings): - auto = auto.fit(X_train, Y_train) - + auto = auto.fit(X_train, Y_train) auto_clone = clone(auto) auto_clone_params = auto_clone.get_params() @@ -925,7 +661,6 @@ def test_pipeline_clonability(self): new_object_params = auto.get_params(deep=False) for name, param in new_object_params.items(): new_object_params[name] = clone(param, safe=False) - new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) @@ -941,55 +676,30 @@ def test_get_params(self): pass def test_add_classifier(self): - """Test that classifiers can be added - - Expects - ------- - * There should be 0 components initially - * There should be 1 component after adding a classifier - * The classifier should be in the search space of the Pipeline after being added - """ self.assertEqual(len(classification_components.additional_components.components), 0) self.assertEqual(len(_addons['classification'].components), 0) - classification_components.add_classifier(DummyClassifier) - self.assertEqual(len(classification_components.additional_components.components), 1) self.assertEqual(len(_addons['classification'].components), 1) - cs = SimpleClassificationPipeline().get_hyperparameter_search_space() self.assertIn('DummyClassifier', str(cs)) - del classification_components.additional_components.components['DummyClassifier'] def test_add_preprocessor(self): - """Test that preprocessors can be added - - Expects - ------- - * There should be 0 components initially - * There should be 1 component after adding a preprocessor - * The preprocessor should be in the search space of the Pipeline after being added - """ self.assertEqual(len(preprocessing_components.additional_components.components), 0) self.assertEqual(len(_addons['feature_preprocessing'].components), 0) - preprocessing_components.add_preprocessor(DummyPreprocessor) - self.assertEqual(len(preprocessing_components.additional_components.components), 1) self.assertEqual(len(_addons['feature_preprocessing'].components), 1) - cs = SimpleClassificationPipeline().get_hyperparameter_search_space() self.assertIn('DummyPreprocessor', str(cs)) - del preprocessing_components.additional_components.components['DummyPreprocessor'] def _test_set_hyperparameter_choice(self, expected_key, implementation, config_dict): - """Given a configuration in config, this procedure makes sure that the given - implementation, which should be a Choice component, honors the type of the - object, and any hyperparameter associated to it - - TODO: typing + """ + Given a configuration in config, this procedure makes sure that + the given implementation, which should be a Choice component, honors + the type of the object, and any hyperparameter associated to it """ keys_checked = [expected_key] implementation_type = config_dict[expected_key] @@ -1034,19 +744,16 @@ def _test_set_hyperparameter_choice(self, expected_key, implementation, config_d else: raise ValueError("New type of pipeline component!") return keys_checked - for key, value in config_dict.items(): if key != expected_key and expected_sub_key in key: expected_attributes[key.split(':')[-1]] = value keys_checked.append(key) - if expected_attributes: attributes = vars(implementation.choice) # Cannot check the whole dictionary, just names, as some # classes map the text hyperparameter directly to a function! for expected_attribute in expected_attributes.keys(): self.assertIn(expected_attribute, attributes.keys()) - return keys_checked def _test_set_hyperparameter_component(self, expected_key, implementation, config_dict): @@ -1054,8 +761,6 @@ def _test_set_hyperparameter_component(self, expected_key, implementation, confi Given a configuration in config, this procedure makes sure that the given implementation, which should be a autosklearn component, honors is created with the desired hyperparameters stated in config_dict - - TODO: typing """ keys_checked = [] attributes = vars(implementation) @@ -1091,7 +796,7 @@ def test_set_hyperparameters_honors_configuration(self): Also considers random_state and ensures pipeline steps correctly recieve the right random_state """ - random_state = 1 + all_combinations = list(itertools.product([True, False], repeat=4)) for sparse, multilabel, signed, multiclass, in all_combinations: dataset_properties = { @@ -1100,6 +805,7 @@ def test_set_hyperparameters_honors_configuration(self): 'multiclass': multiclass, 'signed': signed, } + random_state = 1 cls = SimpleClassificationPipeline( random_state=random_state, dataset_properties=dataset_properties, @@ -1158,9 +864,7 @@ def test_fit_instantiates_component(self): # We reduce the search space as forbidden clauses prevent to instantiate # the user defined preprocessor manually - cls = SimpleClassificationPipeline( - include={'classifier': ['random_forest']} - ) + cls = SimpleClassificationPipeline(include={'classifier': ['random_forest']}) cs = cls.get_hyperparameter_search_space() self.assertIn('CrashPreprocessor', str(cs)) config = cs.sample_configuration() @@ -1171,14 +875,13 @@ def test_fit_instantiates_component(self): # to clean up with check in the future del preprocessing_components.additional_components.components['CrashPreprocessor'] self.fail("cs={} config={} Exception={}".format(cs, config, e)) - cls.set_hyperparameters(config) - - with self.assertRaisesRegex(ValueError, "Make sure fit is called"): - with ignore_warnings(classifier_warnings): - cls.fit( - X=np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), - y=np.array([1, 0, 1, 1]) - ) - + with self.assertRaisesRegex( + ValueError, + "Make sure fit is called" + ): + cls.fit( + X=np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), + y=np.array([1, 0, 1, 1]) + ) del preprocessing_components.additional_components.components['CrashPreprocessor'] diff --git a/test/test_pipeline/test_regression.py b/test/test_pipeline/test_regression.py index cc52109664..03d1e9e321 100644 --- a/test/test_pipeline/test_regression.py +++ b/test/test_pipeline/test_regression.py @@ -1,7 +1,9 @@ import copy import itertools import resource +import sys import tempfile +import traceback import unittest import unittest.mock @@ -26,8 +28,6 @@ from autosklearn.pipeline.util import get_dataset from autosklearn.pipeline.constants import SPARSE, DENSE, SIGNED_DATA, UNSIGNED_DATA, PREDICTIONS -from test.test_pipeline.ignored_warnings import regressor_warnings, ignore_warnings - class SimpleRegressionPipelineTest(unittest.TestCase): _multiprocess_can_split_ = True @@ -123,10 +123,10 @@ def test_multioutput(self): 'X_test': X_test, 'Y_test': Y_test} dataset_properties = {'multioutput': True} - pipeline = SimpleRegressionPipeline(dataset_properties=dataset_properties) - cs = pipeline.get_hyperparameter_search_space() - - self._test_configurations(cs, data=data, dataset_properties=dataset_properties) + cs = SimpleRegressionPipeline(dataset_properties=dataset_properties).\ + get_hyperparameter_search_space() + self._test_configurations(cs, data=data, + dataset_properties=dataset_properties) def _test_configurations(self, configurations_space, make_sparse=False, data=None, dataset_properties=None): @@ -180,9 +180,7 @@ def _test_configurations(self, configurations_space, make_sparse=False, check_is_fitted(step) try: - with ignore_warnings(regressor_warnings): - cls.fit(X_train, Y_train) - + cls.fit(X_train, Y_train) # After fit, all components should be tagged as fitted # by sklearn. Check is fitted raises an exception if that # is not the case @@ -214,13 +212,10 @@ def _test_configurations(self, configurations_space, make_sparse=False, elif 'The condensed distance matrix must contain only finite ' \ 'values.' in e.args[0]: continue - elif "zero-size array to reduction operation maximum which has no " \ - "identity" in e.args[0]: - continue else: - e.args += (f"config={config}",) + print(config) + print(traceback.format_exc()) raise e - except RuntimeWarning as e: if "invalid value encountered in sqrt" in e.args[0]: continue @@ -233,21 +228,22 @@ def _test_configurations(self, configurations_space, make_sparse=False, elif "invalid value encountered in multiply" in e.args[0]: continue else: - e.args += (f"config={config}",) + print(config) + traceback.print_tb(sys.exc_info()[2]) raise e - except UserWarning as e: if "FastICA did not converge" in e.args[0]: continue else: - e.args += (f"config={config}",) + print(config) + traceback.print_tb(sys.exc_info()[2]) raise e - except Exception as e: if "Multiple input features cannot have the same target value" in e.args[0]: continue else: - e.args += (f"config={config}",) + print(config) + traceback.print_tb(sys.exc_info()[2]) raise e def test_default_configuration(self): diff --git a/test/test_util/example_config.yaml b/test/test_util/example_config.yaml index 4b91cce7a2..84849a9b5e 100644 --- a/test/test_util/example_config.yaml +++ b/test/test_util/example_config.yaml @@ -34,7 +34,7 @@ loggers: handlers: [file_handler] propagate: no - autosklearn.automl_common.common.utils.backend: + autosklearn.util.backend: level: DEBUG handlers: [file_handler] propagate: no diff --git a/test/test_util/test_backend.py b/test/test_util/test_backend.py index a029aef4bb..4a62589358 100644 --- a/test/test_util/test_backend.py +++ b/test/test_util/test_backend.py @@ -3,7 +3,7 @@ import unittest import unittest.mock -from autosklearn.automl_common.common.utils.backend import Backend +from autosklearn.util.backend import Backend class BackendModelsTest(unittest.TestCase): @@ -23,7 +23,7 @@ def test_load_model_by_seed_and_id(self, exists_mock, pickleLoadMock): exists_mock.return_value = False open_mock = unittest.mock.mock_open(read_data='Data') with unittest.mock.patch( - 'autosklearn.automl_common.common.utils.backend.open', + 'autosklearn.util.backend.open', open_mock, create=True, ):