-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtttt.py
68 lines (53 loc) · 1.84 KB
/
tttt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import random
import numpy
import torch
from einops import rearrange
from torch import nn
from base_modle.base_modle import cov_encode
from base_modle.dataset import dastset
from base_modle.st2_ds_h5 import st2_dataset
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
if __name__=='__main__':
# fff=st2_dataset('V2_dataset_stage2.hdf5','st2_rcmap','st2_map','./i/','img_mapss')
# for i in fff:
# i
# pass
# asfsd=nn.Sequential(
# nn.ConvTranspose2d(in_channels=512, out_channels=600, kernel_size=(15, 15), stride=2,
# padding=0), GLU(1),
# nn.ConvTranspose2d(in_channels=300, out_channels=512, kernel_size=(15, 15), stride=2,
# padding=0), GLU(1),
# nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=(8, 8), stride=2,
# padding=1), GLU(1),
# nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=(8, 8), stride=2,
# padding=2), GLU(1),
# nn.ConvTranspose2d(in_channels=64, out_channels=3, kernel_size=(8, 8), stride=2,
# padding=1),
# # nn.Sigmoid()
# nn.ReLU(),
# )
aaaaaa=torch.load('C:/Users/autumn/Downloads/新建文件夹 (19)/1model.ckpt')
aaaaaa1 = torch.load('C:/Users/autumn/Downloads/vgg.pth')
pass
#
# aaaa=dastset('映射.json','fix1.json','./i')
# for i in range(1000):
# asa=random.randint(0,44230)
# e=aaaa[asa]
# pass
#
# a=torch.randn(4,512,8,8)
#
# out = rearrange(a, 'b c h w -> b (h w) c')
# pass
#
#
#
# aaa=cov_encode()(torch.randn(20,3,256,256))
# aaa