-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathimage_helpers.py
60 lines (47 loc) · 1.65 KB
/
image_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import scipy.misc
import numpy as np
from PIL import Image
from glob import glob
import os
# Helpers for image handling
def get_image(image_path, image_size, is_crop=True):
return transform(imread(image_path), image_size, is_crop)
def save_images(images, image_path):
for imgindex in range(images.shape[0]):
scipy.misc.imsave(image_path+str(imgindex)+'.jpg',images[imgindex])
def imread(path):
return scipy.misc.imread(path).astype(np.float)
def transform(image, npx=64, is_crop=True):
# npx : # of pixels width/height of image
if is_crop:
cropped_image = center_crop(image, npx)
else:
cropped_image = image
return np.array(cropped_image)/127.5 - 1.
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_w, resize_w])
#def imsave(images, size, path):
# return scipy.misc.imsave(path, merge(images, size))
def inverse_transform(images):
return (images+1.)/2.
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx / size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img
def convert_to_lower_resolution():
images=glob(os.path.join('cars_train\cars_train/','*.jpg'))
i=0
size=108,108
for image in images:
im=Image.open(image)
im_resized=im.resize(size,Image.ANTIALIAS)
im_resized.save("cars_train/"+str(i)+'.jpg')