forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
executable file
·329 lines (292 loc) · 15.1 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import json
import logging
import os
import socket
import sys
from typing import Any, Dict, List, Union
import utils
from pathlib import Path
def get_configs(path: Path) -> List[str]:
result = list()
for dir_or_file in os.listdir(path):
new_path = Path(path, dir_or_file)
if dir_or_file.endswith('.json'):
result.append(str(new_path))
elif os.path.isdir(new_path):
result += get_configs(new_path)
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--configs', metavar='ConfigPath', type=str,
default='configs/config_example.json',
help='The path to a configuration file or '
'a directory that contains configuration files')
parser.add_argument('--device', '--devices', default='host cpu gpu none', type=str, nargs='+',
choices=('host', 'cpu', 'gpu', 'none'),
help='Availible execution context devices. '
'This parameter only marks devices as available, '
'make sure to add the device to the config file '
'to run it on a specific device')
parser.add_argument('--dummy-run', default=False, action='store_true',
help='Run configuration parser and datasets generation '
'without benchmarks running')
parser.add_argument('--dtype', '--dtypes', type=str, default="float32 float64", nargs='+',
choices=("float32", "float64"),
help='Available floating point data types'
'This parameter only marks dtype as available, '
'make sure to add the dtype parameter to the config file ')
parser.add_argument('--workload-size', type=str, default="small medium large", nargs='+',
choices=("small", "medium", "large"),
help='Available workload sizes,'
'make sure to add the workload-size parameter to the config file '
'unmarked workloads will be launched anyway')
parser.add_argument('--no-intel-optimized', default=False, action='store_true',
help='Use Scikit-learn without Intel optimizations')
parser.add_argument('--output-file', default='results.json',
type=argparse.FileType('w'),
help='Output file of benchmarks to use with their runner')
parser.add_argument('--verbose', default='INFO', type=str,
choices=("ERROR", "WARNING", "INFO", "DEBUG"),
help='Print additional information during benchmarks running')
parser.add_argument('--report', nargs='?', default=None, metavar='ConfigPath', type=str,
const='report_generator/default_report_gen_config.json',
help='Create an Excel report based on benchmarks results. '
'If the parameter is not set, the reporter will not be launched. '
'If the parameter is set and the config is not specified, '
'the default config will be used. '
'Need "openpyxl" library')
args = parser.parse_args()
logging.basicConfig(
stream=sys.stdout, format='%(levelname)s: %(message)s', level=args.verbose)
hostname = socket.gethostname()
env = os.environ.copy()
if 'DATASETSROOT' in env:
datasets_root = env['DATASETSROOT']
logging.info(f'Datasets folder at {datasets_root}')
elif 'DAAL_DATASETS' in env:
datasets_root = env['DAAL_DATASETS']
logging.info(f'Datasets folder at {datasets_root}')
else:
datasets_root = ''
logging.info('Datasets folder is not set, using local folder')
json_result: Dict[str, Union[Dict[str, Any], List[Any]]] = {
'hardware': utils.get_hw_parameters(),
'software': utils.get_sw_parameters(),
'results': []
}
is_successful = True
# getting jsons from folders
paths_to_configs: List[str] = list()
for config_name in args.configs.split(','):
if os.path.isdir(config_name):
config_name = get_configs(Path(config_name))
else:
config_name = [config_name]
paths_to_configs += config_name
args.configs = ','.join(paths_to_configs)
for config_name in args.configs.split(','):
logging.info(f'Config: {config_name}')
with open(config_name, 'r') as config_file:
config = json.load(config_file)
# get parameters that are common for all cases
common_params = config['common']
for params_set in config['cases']:
params = common_params.copy()
params.update(params_set.copy())
if 'workload-size' in params:
if params['workload-size'] not in args.workload_size:
continue
del params['workload-size']
device = []
if 'device' not in params:
if 'sklearn' in params['lib']:
logging.info('The device parameter value is not defined in config, '
'none is used')
device = ['none']
elif not isinstance(params['device'], list):
device = [params['device']]
else:
device = params['device']
params["device"] = [dv for dv in device if dv in args.device]
dtype = []
if 'dtype' not in params:
dtype = ['float64']
elif not isinstance(params['dtype'], list):
dtype = [params['dtype']]
else:
dtype = params['dtype']
params['dtype'] = [dt for dt in dtype if dt in args.dtype]
algorithm = params['algorithm']
libs = params['lib']
if not isinstance(libs, list):
libs = [libs]
del params['dataset'], params['algorithm'], params['lib']
cases = utils.generate_cases(params)
logging.info(f'{algorithm} algorithm: {len(libs) * len(cases)} case(s),'
f' {len(params_set["dataset"])} dataset(s)\n')
if (len(libs) * len(cases) == 0):
continue
for dataset in params_set['dataset']:
if dataset['source'] in ['csv', 'npy']:
dataset_name = dataset['name'] if 'name' in dataset else 'unknown'
if 'training' not in dataset or 'x' not in dataset['training']:
logging.warning(
f'Dataset {dataset_name} could not be loaded. \n'
'Training data for algorithm is not specified'
)
continue
files = {}
files['file-X-train'] = dataset['training']["x"]
if 'y' in dataset['training']:
files['file-y-train'] = dataset['training']["y"]
if 'testing' in dataset:
files['file-X-test'] = dataset["testing"]["x"]
if 'y' in dataset['testing']:
files['file-y-test'] = dataset["testing"]["y"]
dataset_path = utils.find_the_dataset(dataset_name, datasets_root,
files.values())
if dataset_path is None:
logging.warning(
f'Dataset {dataset_name} could not be loaded. \n'
'Check the correct name or expand the download in '
'the folder dataset.'
)
continue
elif not dataset_path and datasets_root:
logging.info(
f'{dataset_name} is taken from local folder'
)
paths = ''
for data_path, data_file in files.items():
paths += f'--{data_path} {os.path.join(dataset_path, data_file)} '
elif dataset['source'] == 'synthetic':
class GenerationArgs:
classes: int
clusters: int
features: int
filex: str
filextest: str
filey: str
fileytest: str
samples: int
seed: int
test_samples: int
type: str
gen_args = GenerationArgs()
if 'seed' in params_set:
gen_args.seed = params_set['seed']
else:
gen_args.seed = 777
# default values
gen_args.clusters = 10
gen_args.type = dataset['type']
gen_args.samples = dataset['training']['n_samples']
gen_args.features = dataset['n_features']
if 'n_classes' in dataset:
gen_args.classes = dataset['n_classes']
cls_num_for_file = f'-{dataset["n_classes"]}'
elif 'n_clusters' in dataset:
gen_args.clusters = dataset['n_clusters']
cls_num_for_file = f'-{dataset["n_clusters"]}'
else:
cls_num_for_file = ''
file_prefix = f'data/synthetic-{gen_args.type}{cls_num_for_file}-'
file_postfix = f'-{gen_args.samples}x{gen_args.features}.npy'
files = {}
gen_args.filex = f'{file_prefix}X-train{file_postfix}'
files['file-X-train'] = gen_args.filex
if gen_args.type not in ['blobs']:
gen_args.filey = f'{file_prefix}y-train{file_postfix}'
files['file-y-train'] = gen_args.filey
if 'testing' in dataset:
gen_args.test_samples = dataset['testing']['n_samples']
gen_args.filextest = f'{file_prefix}X-test{file_postfix}'
files['file-X-test'] = gen_args.filextest
if gen_args.type not in ['blobs']:
gen_args.fileytest = f'{file_prefix}y-test{file_postfix}'
files['file-y-test'] = gen_args.fileytest
else:
gen_args.test_samples = 0
gen_args.filextest = gen_args.filex
files['file-X-test'] = gen_args.filextest
if gen_args.type not in ['blobs']:
gen_args.fileytest = gen_args.filey
files['file-y-test'] = gen_args.filey
dataset_name = f'synthetic_{gen_args.type}'
dataset_path = utils.find_or_gen_dataset(gen_args,
datasets_root, files.values())
if dataset_path is None:
logging.warning(
f'Dataset {dataset_name} could not be generated. \n'
)
continue
paths = ''
for data_path, data_file in files.items():
paths += f'--{data_path} {os.path.join(dataset_path, data_file)} '
else:
logging.warning('Unknown dataset source. Only synthetics datasets '
'and csv/npy files are supported now')
no_intel_optimize = \
'--no-intel-optimized ' if args.no_intel_optimized else ''
for lib in libs:
for i, case in enumerate(cases):
command = f'python {lib}_bench/{algorithm}.py ' \
+ no_intel_optimize \
+ f'--arch {hostname} {case} {paths} ' \
+ f'--dataset-name {dataset_name}'
command = ' '.join(command.split())
logging.info(command)
if not args.dummy_run:
case = f'{lib},{algorithm} ' + case
stdout, stderr = utils.read_output_from_command(
command, env=os.environ.copy())
stdout, extra_stdout = utils.filter_stdout(stdout)
stderr = utils.filter_stderr(stderr)
print(stdout, end='\n')
if extra_stdout != '':
stderr += f'CASE {case} EXTRA OUTPUT:\n' \
+ f'{extra_stdout}\n'
try:
if isinstance(json_result['results'], list):
json_result['results'].extend(
json.loads(stdout))
except json.JSONDecodeError as decoding_exception:
stderr += f'CASE {case} JSON DECODING ERROR:\n' \
+ f'{decoding_exception}\n{stdout}\n'
if stderr != '':
if 'daal4py' not in stderr:
is_successful = False
logging.warning(
'Error in benchmark: \n' + stderr)
json.dump(json_result, args.output_file, indent=4)
name_result_file = args.output_file.name
args.output_file.close()
if args.report:
command = 'python report_generator/report_generator.py ' \
+ f'--result-files {name_result_file} ' \
+ f'--report-file {name_result_file}.xlsx ' \
+ '--generation-config ' + args.report
logging.info(command)
stdout, stderr = utils.read_output_from_command(command)
if stderr != '':
logging.warning('Error in report generator: \n' + stderr)
is_successful = False
if not is_successful:
logging.warning('benchmark running had runtime errors')
sys.exit(1)