-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathroom_response_estimator.py
110 lines (87 loc) · 3.54 KB
/
room_response_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from scipy.fftpack import fft, ifft
from scipy.signal import fftconvolve, convolve, kaiser
from scipy.linalg import toeplitz, lstsq
import copy
import numpy as np
import math
class RoomResponseEstimator(object):
"""
Gives probe impulse, gets response and calculate impulse response.
Method from paper: "Simultaneous measurement of impulse response and distortion with a swept-sine technique"
Angelo Farina
"""
def __init__(self, duration=10.0, low=100.0, high=15000.0, Fs=44100.0):
self.Fs = Fs
# Total length in samples
self.T = Fs*duration
self.w1 = low / self.Fs * 2*np.pi
self.w2 = high / self.Fs * 2*np.pi
self.probe_pulse = self.probe()
# Apply exponential signal on the beginning and the end of the probe signal.
exp_window = 1-np.exp(np.linspace(0,-10, 5000))
window_len = 2500
win = kaiser(window_len, 16)
win_start = win[:int(win.shape[0]/2)]
self.probe_pulse[:win_start.shape[0]] *= win_start
window_len = 2500
win = kaiser(window_len, 14)
win_end = win[int(win.shape[0]/2):]
self.probe_pulse[-win_end.shape[0]:] *= win_end
# This is what the value of K will be at the end (in dB):
kend = 10**((-6*np.log2(self.w2/self.w1))/20)
# dB to rational number.
k = np.log(kend)/self.T
# Making reverse probe impulse so that convolution will just
# calculate dot product. Weighting it with exponent to acheive
# 6 dB per octave amplitude decrease.
self.reverse_pulse = self.probe_pulse[-1::-1] * \
np.array(list(\
map(lambda t: np.exp(float(t)*k), range(int(self.T)))\
)\
)
# Now we have to normilze energy of result of dot product.
# This is "naive" method but it just works.
Frp = fft(fftconvolve(self.reverse_pulse, self.probe_pulse))
self.reverse_pulse /= np.abs(Frp[round(Frp.shape[0]/4)])
def probe(self):
w1 = self.w1
w2 = self.w2
T = self.T
# page 5
def lin_freq(t):
return w1*t + (w2-w1)/T * t*t / 2
# page 6
def log_freq(t):
K = T * w1 / np.log(w2/w1)
L = T / np.log(w2/w1)
return K * (np.exp(t/L)-1.0)
freqs = log_freq(range(int(T)))
impulse = np.sin(freqs)
return impulse
def estimate(self, response):
I = fftconvolve( response, self.reverse_pulse, mode='full')
I = I[self.probe_pulse.shape[0]:self.probe_pulse.shape[0]*2+1]
peek_x = np.argmax( I, axis=0 )
# I = I[peek_x:]
return I
def inverted_ir(self, IR, invir_len=None):
'''
Calculates reverse impulse response so that we can use it as
a predistortion filter.
IR -- the estimated impulse response, which is received from estimate method.
invir_len -- the length of the target reversed ir.
'''
ir_len = IR.shape[0]
if invir_len is None:
invir_len = ir_len
# The result of convolution IR and inverted IR must be delta-impulse.
# Here it is:
Y = np.zeros(invir_len + ir_len-1)
Y[ir_len - 1] = 1
ir_zpadded = np.append(IR, np.zeros(invir_len-ir_len))
H = toeplitz(ir_zpadded, np.zeros(invir_len))
H_tail = toeplitz(np.zeros(Y.shape[0]), ir_zpadded[-1::-1])[:ir_len-1]
H = np.append(H, H_tail, axis=0)
inverse = lstsq(H, Y)[0]
inverse /= np.max(fftconvolve(IR, inverse))
return inverse