In this case study, we describe applying DeepVariant to a real WGS sample.
Then we assess the quality of the DeepVariant variant calls with hap.py
.
To make it faster to run over this case study, we run only on chromosome 20.
Docker will be used to run DeepVariant and hap.py,
We will be using GRCh38 for this case study.
mkdir -p reference
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai
We will benchmark our variant calls against v4.2 of the Genome in a Bottle small variant benchmarks for HG003.
mkdir -p benchmark
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov//giab/ftp/data/AshkenazimTrio/analysis/NIST_v4.2_SmallVariantDraftBenchmark_07092020
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.bed > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz.tbi
We'll use HG003 Illumina WGS reads publicly available from the PrecisionFDA Truth v2 Challenge.
mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/case-study-testdata
curl ${HTTPDIR}/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam > input/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam
curl ${HTTPDIR}/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam.bai > input/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam.bai
DeepVariant pipeline consists of 3 steps: make_examples
, call_variants
, and
postprocess_variants
. You can now run DeepVariant with one command using the
run_deepvariant
script.
mkdir -p output
mkdir -p output/intermediate_results_dir
BIN_VERSION="1.1.0"
sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
google/deepvariant:"${BIN_VERSION}" \
/opt/deepvariant/bin/run_deepvariant \
--model_type WGS \
--ref /reference/GRCh38_no_alt_analysis_set.fasta \
--reads /input/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam \
--output_vcf /output/HG003.output.vcf.gz \
--output_gvcf /output/HG003.output.g.vcf.gz \
--num_shards $(nproc) \
--regions chr20 \
--intermediate_results_dir /output/intermediate_results_dir
By specifying --model_type WGS
, you'll be using a model that is best suited
for Illumina Whole Genome Sequencing data.
--intermediate_results_dir
flag is optional. By specifying it, the
intermediate outputs of make_examples
and call_variants
stages can be found
in the directory. After the command, you can find these files in the directory:
call_variants_output.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples.tfrecord-?????-of-?????.gz
For running on GPU machines, or using Singularity instead of Docker, see Quick Start.
mkdir -p happy
sudo docker pull pkrusche/hap.py
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
pkrusche/hap.py /opt/hap.py/bin/hap.py \
/benchmark/HG003_GRCh38_1_22_v4.2_benchmark.vcf.gz \
/output/HG003.output.vcf.gz \
-f /benchmark/HG003_GRCh38_1_22_v4.2_benchmark.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/happy.output \
--engine=vcfeval \
-l chr20
Output:
Benchmarking Summary:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 10634 10576 58 21101 26 10040 22 0.994546 0.997649 0.475807 0.996095 NaN NaN 1.749861 2.264070
INDEL PASS 10634 10576 58 21101 26 10040 22 0.994546 0.997649 0.475807 0.996095 NaN NaN 1.749861 2.264070
SNP ALL 70209 69943 266 86372 76 16323 17 0.996211 0.998915 0.188985 0.997561 2.297347 2.060724 1.884533 1.922491
SNP PASS 70209 69943 266 86372 76 16323 17 0.996211 0.998915 0.188985 0.997561 2.297347 2.060724 1.884533 1.922491