-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsymbolic_opset10.py
180 lines (148 loc) · 7.82 KB
/
symbolic_opset10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn.modules.utils import _single, _pair, _triple
import torch.onnx
# This import monkey-patches graph manipulation methods on Graph, used for the
# ONNX symbolics
import torch.onnx.utils
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_helper import parse_args, _unimplemented
import torch.onnx.symbolic_opset9
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in symbolic_helper.py
# This file exports ONNX ops for opset 10
# Opset 10 is supported by ONNX release 1.5.0
# release on 04/24/19
@parse_args('v', 'i', 'i', 'none')
def sort(g, self, dim, decending, out=None):
return sym_help._sort_helper(g, self, dim, decending=decending, out=out)
# @parse_args('v', 'v', 'i', 'i', 'i', 'none')
# def topk(g, self, k, dim, largest, sorted, out=None):
# return sym_help._topk_helper(g, self, k, dim, largest=largest, sorted=sorted, out=out)
def _max_pool(name, tuple_fn, ndims, return_indices):
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
def symbolic_fn(g, input, kernel_size, stride, padding, dilation, ceil_mode):
if not stride:
stride = kernel_size
kwargs = {
'kernel_shape_i': tuple_fn(kernel_size),
'pads_i': tuple_fn(padding) * 2,
'strides_i': tuple_fn(stride),
'ceil_mode_i': ceil_mode,
}
if set(tuple_fn(dilation)) != {1}:
kwargs['dilations_i'] = tuple_fn(dilation)
# easy but hacky way to get flattened indices values
# to be used to convert the indices values to non-flattened.
# In ONNX the indices are computed as a flatten 1-D tensor,
# so the values in indices are in [0, N x C x D1 x ... x Dn).
# To convert the indices to the same format used by Pytorch,
# we first execute a maxpool with a kernel and stride of 1 on the same input.
# This will result in a tensor of indices in which each index will have it's own value.
# Using this tensor as a reference, we extract the first index of each axis and substract
# it from each index of this axis in the indices to convert.
# This step will result in a tensor were each dimension has values of indices within
# the dimension it is in.
# For more information :
# https://github.com/pytorch/pytorch/pull/16455#issuecomment-460776407
if return_indices:
r, indices = g.op("MaxPool", input, outputs=2, **kwargs)
_, flattened_indices = g.op("MaxPool", input, outputs=2,
kernel_shape_i=[1 for _ in range(ndims)],
strides_i=[1 for _ in range(ndims)])
# convert indices to have non-flattened indices values
from torch.onnx.symbolic_opset9 import sub
s = sym_help._slice_helper(g, flattened_indices, axes=[2 + i for i in range(ndims)],
starts=tuple_fn(0), ends=tuple_fn(1))
indices = sub(g, indices, s)
return r, indices
else:
r = g.op("MaxPool", input, outputs=1, **kwargs)
return r
return symbolic_fn
max_pool1d = _max_pool("max_pool1d", _single, 1, return_indices=False)
max_pool2d = _max_pool("max_pool2d", _pair, 2, return_indices=False)
max_pool3d = _max_pool("max_pool3d", _triple, 3, return_indices=False)
max_pool1d_with_indices = _max_pool("max_pool1d_with_indices", _single, 1, return_indices=True)
max_pool2d_with_indices = _max_pool("max_pool2d_with_indices", _pair, 2, return_indices=True)
max_pool3d_with_indices = _max_pool("max_pool3d_with_indices", _triple, 3, return_indices=True)
def _avg_pool(name, tuple_fn):
@parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none')
def symbolic_fn(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override=None):
padding = sym_help._avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name)
if count_include_pad:
input = g.op("Pad", input,
pads_i=((0,) * 2 + padding) * 2,
mode_s='constant',
value_f=0.)
padding = (0,) * len(padding)
output = g.op("AveragePool", input,
kernel_shape_i=tuple_fn(kernel_size),
strides_i=tuple_fn(stride),
pads_i=padding * 2,
ceil_mode_i=ceil_mode)
return output
return symbolic_fn
avg_pool1d = _avg_pool('avg_pool1d', _single)
avg_pool2d = _avg_pool('avg_pool2d', _pair)
avg_pool3d = _avg_pool('avg_pool3d', _triple)
def _interpolate(name, dim, interpolate_mode):
def symbolic_fn(g, input, output_size, align_corners=None):
sym_help._interpolate_warning(interpolate_mode)
align_corners = sym_help._maybe_get_scalar(align_corners)
if align_corners:
return _unimplemented(name, "align_corners == True")
scales = sym_help._interpolate_size_to_scales(g, input, output_size, dim)
return g.op("Resize", input, scales, mode_s=interpolate_mode)
return symbolic_fn
upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest")
upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest")
upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest")
upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear")
upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear")
upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear")
def arange(g, *args):
from torch.onnx.symbolic_opset11 import arange as arange11
return arange11(g, *args)
def __interpolate(g, input, size, scale_factor, mode , align_corners):
scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor,
mode , align_corners)
return g.op("Resize", input, scales, mode_s=mode)
def _slice(g, input, axes, starts, ends, steps=None, dynamic_slice=False):
if dynamic_slice:
starts = g.op("Unsqueeze", starts, axes_i=[0])
ends = g.op("Unsqueeze", ends, axes_i=[0])
axes = g.op("Unsqueeze", axes, axes_i=[0])
else:
assert len(starts) == len(ends)
assert len(starts) == len(axes)
assert steps is None or len(starts) == len(steps)
if len(starts) == 1 and starts[0] == 0 and ends[0] == 9223372036854775807 \
and (steps is None or (len(steps) == 1 and steps[0] == 1)):
return input
axes = g.op("Constant", value_t=torch.tensor(axes))
starts = g.op("Constant", value_t=torch.tensor(starts))
ends = g.op("Constant", value_t=torch.tensor(ends))
if steps is None:
return g.op("Slice", input, starts, ends, axes)
steps = g.op("Constant", value_t=torch.tensor(steps))
return g.op("Slice", input, starts, ends, axes, steps)
@parse_args('v', 'v', 'v', 'v', 'i')
def slice(g, self, dim, start, end, step):
if (start.node().kind() != 'onnx::Constant' or
end.node().kind() != 'onnx::Constant' or dim.node().kind() != 'onnx::Constant'):
dynamic_slice = True
else:
start = [sym_help._parse_arg(start, 'i')]
end = [sym_help._parse_arg(end, 'i')]
dim = [sym_help._parse_arg(dim, 'i')]
dynamic_slice = False
return sym_help._slice_helper(g, self, axes=dim, starts=start, ends=end, steps=[step], dynamic_slice=dynamic_slice)
@parse_args('v', 'is')
def flip(g, input, dims):
return sym_help._slice_helper(g, input, axes=dims,
starts=[-1] * len(dims),
ends=[-9223372036854775807] * len(dims),
steps=[-1] * len(dims))
def fmod(g, input, other):
return g.op("Mod", input, other, fmod_i=1)