-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathani_spectra_together.py
executable file
·330 lines (309 loc) · 14.5 KB
/
ani_spectra_together.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
##################################################################
## MODULES
##################################################################
import os
import argparse
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlibrc import *
##################################################################
## PREPARE TERMINAL/WORKSPACE/CODE
#################################################################
os.system('clear') # clear terminal window
plt.close('all') # close all pre-existing plots
##################################################################
## FUNCTIONS
##################################################################
def str2bool(v):
'''
FROM:
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
'''
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def stringChop(var_string, var_remove):
''' stringChop
PURPOSE / OUTPUT:
Remove the occurance of the string 'var_remove' from both the start and end of the string 'var_string'.
'''
if var_string.endswith(var_remove):
var_string = var_string[:-len(var_remove)]
if var_string.startswith(var_remove):
var_string = var_string[len(var_remove):]
return var_string
def createFolder(folder_name):
''' createFolder
PURPOSE:
Create the folder passed as a filepath to inside the folder.
OUTPUT:
Commandline output of the success/failure status of creating the folder.
'''
if not(os.path.exists(folder_name)):
os.makedirs(folder_name)
print('SUCCESS: Folder created. \n\t' + folder_name)
print(' ')
else:
print('WARNING: Folder already exists (folder not created). \n\t' + folder_name)
print(' ')
def setupInfo(filepath):
''' setupInfo
PURPOSE:
Collect filenames that will be processedm and the number of these files
'''
global bool_debug_mode
## save the the filenames to process
file_names = list(filter(meetsCondition, sorted(os.listdir(filepath))))
print('Filepath: ' + filepath)
print('Number of sepctra files: ' + str(len(file_names)/2))
print(' ')
## check files
if bool_debug_mode:
print('The files in the filepath:')
print('\t' + filepath)
print('\tthat satisfied meetCondition are the files:')
print('\t\t' + '\n\t\t'.join(file_names))
print(' ')
## return data
return int(file_names[-1].split('_')[-3])
def createFilePath(names):
''' creatFilePath
PURPOSE / OUTPUT:
Turn an ordered list of names and concatinate them into a filepath.
'''
return ('/'.join([x for x in names if x != '']))
def meetsCondition(element):
global bool_debug_mode, file_end, file_start
## accept files that look like: Turb_hdf5_plt_cnt_*(mags.dat or vels.dat)
if (element.__contains__('Turb_hdf5_plt_cnt_') and (element.endswith('mags.dat') or element.endswith('vels.dat'))):
## check that the file meets the minimum file number requirement
bool_domain_upper = (int(element.split('_')[-3]) >= file_start)
if bool_debug_mode:
## return the first 5 files
return bool(bool_domain_upper and (int(element.split('_')[-3]) <= 5))
elif file_end != np.Inf:
## return the files in the domain [file_start, file_end]
return bool(bool_domain_upper and (int(element.split('_')[-3]) <= file_end))
else:
## return every file with a number greater than file_start
return bool(bool_domain_upper)
return False
def loadData(directory):
global bool_debug_mode, var_y
filedata = open(directory).readlines() # load in data
header = filedata[5].split() # save the header
data = np.array([x.strip().split() for x in filedata[6:]]) # store all data. index: data[row, col]
if bool_debug_mode:
print('\nHeader names: for ' + directory.split('/')[-1])
print('\n'.join(header)) # print all header names (with index)
data_y = list(map(float, data[:, var_y]))
return data_y
def plot_k_0(k_0):
global ylim_min, ylim_max
plt.plot([k_0, k_0], [ylim_min, ylim_max], 'k--')
plt.text(k_0*0.95, ylim_max*0.8, r'$k_0$', ha='right', va='bottom', fontsize=28)
def plot_k_nu(k_0, Re, var_str):
global ylim_min, ylim_max
k_nu = Re**(3/4) * k_0
plt.plot([k_nu, k_nu], [ylim_min, ylim_max], var_str)
plt.text(k_nu*1.05, ylim_max*0.8, r'$k_\nu$', ha='left', va='bottom', fontsize=28)
def plot_k_eta(k_0, Re, Pm, var_str):
global ylim_min, ylim_max
k_eta = Re**(1/4) * (Re*Pm)**(1/2) * k_0
plt.plot([k_eta, k_eta], [ylim_min, ylim_max], var_str)
plt.text(k_eta*0.95, ylim_max*0.8, r'$k_\eta$', ha='right', va='bottom', fontsize=28)
def calc_moving_ave(data_vals, window_size):
dy_moving_ave = []
for tmp_index in range(len(data_vals)):
if tmp_index < window_size:
dy_moving_ave.append(data_vals[tmp_index])
else:
## calculate moving average of the magnetic spectra peak
dy_moving_ave.append(sum(data_vals[tmp_index : tmp_index + window_size]) / window_size)
return dy_moving_ave
def plotData(data_x_mag, data_y_mag, label_mag, col_str):
if ~all(v == 0 for v in data_y_mag):
plt.plot(data_x_mag, data_y_mag, color=col_str, linestyle='--', label=label_mag)
max_mag = max(data_y_mag)
plt.plot(data_x_mag[data_y_mag.index(max_mag)], max_mag, color=col_str, marker='.', markersize=10)
##################################################################
## INPUT COMMAND LINE ARGUMENTS
##################################################################
global bool_debug_mode
global filepath_base, file_start, file_end
ap = argparse.ArgumentParser(description='A bunch of input arguments')
## ------------------- DEFINE (OPTIONAL) ARGUMENTS
ap.add_argument('-debug', type=str2bool, default=False, required=False, help='Debug mode', nargs='?', const=True)
ap.add_argument('-plot_kin', type=str2bool, default=True, required=False, help='Plot kinetic spectra?', nargs='?', const=False)
ap.add_argument('-plot_mag', type=str2bool, default=True, required=False, help='Plot magnetic spectra?', nargs='?', const=False)
ap.add_argument('-vis_folder', type=str, default='visFiles', required=False, help='Name of the plot folder')
ap.add_argument('-sub_folder', type=str, default='spectFiles', required=False, help='Name of the folder where the data is stored')
ap.add_argument('-file_start', type=int, default=0, required=False, help='File number to start plotting from')
ap.add_argument('-file_end', type=int, default=np.Inf, required=False, help='Number of files to process')
## ------------------- DEFINE (REQUIRED) ARGUMENTS
ap.add_argument('-base_path', type=str, required=True, help='Base filepath to all the folders')
ap.add_argument('-dat_folders', type=str, required=True, help='List of folders with data', nargs='+')
ap.add_argument('-dat_labels', type=str, required=True, help='Data labels', nargs='+')
ap.add_argument('-pre_name', type=str, required=True, help='Figure name')
## ---------------------------- OPEN ARGUMENTS
args = vars(ap.parse_args())
## ---------------------------- SAVE PARAMETERS
bool_debug_mode = args['debug'] # enable/disable debug mode
bool_plot_kin = args['plot_kin'] # plot the kinetic spectra?
bool_plot_mag = args['plot_mag'] # plot the magnetic spectra?
file_start = args['file_start'] # starting processing frame
file_end = args['file_end'] # the last file to process
## ---------------------------- SAVE FILEPATH PARAMETERS
filepath_base = args['base_path'] # home directory
folders_data = args['dat_folders'] # list of subfolders where each simulation's data is stored
labels_data = args['dat_labels'] # list of labels for plots
folder_sub = args['sub_folder'] # sub-subfolder where actual data is stored
folder_vis = args['vis_folder'] # subfolder where animation and plots will be saved
pre_name = args['pre_name'] # name of figures
## ---------------------------- ADJUST ARGUMENTS
# ## remove the trailing '/' from the input filepath and folders
if filepath_base.endswith('/'):
filepath_base = filepath_base[:-1]
## replace any '//' with '/'
filepath_base = filepath_base.replace('//', '/')
## remove '/' from variable names
folder_sub = stringChop(folder_sub, '/')
folder_vis = stringChop(folder_vis, '/')
pre_name = stringChop(pre_name, '/')
for i in range(len(folders_data)):
folders_data[i] = stringChop(folders_data[i], '/')
##################################################################
## USER VARIABLES
##################################################################
## number of spectra files per eddy turnover
t_eddy = 10
## set the figure's axis limits
global ylim_min, ylim_max
xlim_min = 1
xlim_max = 1.3e+02
ylim_min = 1.0e-25
ylim_max = 1
## specify which variables you want to plot
global var_x, var_y
var_x = 1 # variable: wave number (k)
var_y = 15 # variable: power spectrum
##################################################################
## INITIALISING VARIABLES
##################################################################
filepaths_data = []
## create the filepaths to the data
for i in range(len(folders_data)):
filepaths_data.append(createFilePath([filepath_base, folders_data[i], folder_sub]).replace('//', '/'))
## create the folder where plots will be saved
filepath_plot = createFilePath([filepath_base, folder_vis, 'plotSpectra']).replace('//', '/')
createFolder(filepath_plot)
## ---------------------------- START CODE
print('Base filepath: \t\t' + filepath_base)
for i in range(len(filepaths_data)):
print('Data folder ' + str(i) + ': \t\t' + filepaths_data[i])
print('Figure folder: \t\t' + filepath_plot)
print('Figure name: \t\t' + pre_name)
print(' ')
##################################################################
## CREATE FIGURES
##################################################################
## count the number of frames to animate
num_figs = np.nan
for i in range(len(folders_data)):
num_figs = np.nanmax([num_figs, setupInfo(filepaths_data[i])])
## create and save each frame of the animation
for fig_index in range(1, int(num_figs)):
#################### INITIALISE LOOP
####################################
fig, ax = plt.subplots(constrained_layout=True)
## normalise time point by eddy-turnover time
var_time = fig_index/t_eddy
## let the user know how the animation is progressing
print('Processing: %0.3f%% complete'%(100 * fig_index/num_figs))
#################### LOAD & PLOT DATA
##############################
name_file_kin = 'Turb_hdf5_plt_cnt_' + '{0:04}'.format(fig_index) + '_spect_vels.dat' # kinetic file
name_file_mag = 'Turb_hdf5_plt_cnt_' + '{0:04}'.format(fig_index) + '_spect_mags.dat' # magnetic file
for i in range(len(filepaths_data)):
## load velocity spectra
if bool_plot_kin:
file_path = createFilePath([filepaths_data[i], name_file_kin])
## check if file exists
if os.path.isfile(file_path):
## load data
data_y_kin = loadData(file_path)
## plot data
print('\tPlotting: ' + file_path)
plt.plot(range(1, len(data_y_kin)+1), data_y_kin,
color=sns.color_palette("PuBu", n_colors=len(filepaths_data))[i],
linestyle='-', linewidth=2)
## load magnetic spectra
if bool_plot_mag:
file_path = createFilePath([filepaths_data[i], name_file_mag])
## check if file exists
if os.path.isfile(file_path):
## load data
data_y_mag = loadData(file_path)
## plot data
print('\tPlotting: ' + file_path)
plt.plot(range(1, len(data_y_mag)+1), data_y_mag,
label=labels_data[i],
color=sns.color_palette("OrRd", n_colors=len(filepaths_data))[i],
linestyle='--', linewidth=2)
# add legend
plt.legend(loc='lower center', ncol=3, fontsize=17, frameon=False)
#################### LABEL and ADJUST PLOT
##########################################
## scale axies
plt.xscale('log')
plt.yscale('log')
## set axis limits
plt.xlim(xlim_min, xlim_max)
plt.ylim(ylim_min, ylim_max)
## annote time (eddy tunrover-time)
title = plt.annotate(r'$t/t_{\mathrm{eddy}} = $' + u'%0.2f'%(var_time),
xy=(0.5, 0.95),
fontsize=20, color='black',
ha='center', va='top', xycoords='axes fraction')
# label plots
plt.xlabel(r'$k$', fontsize=20)
plt.ylabel(r'$\mathcal{P}$', fontsize=20)
## major grid
plt.grid(which='major', linestyle='-', linewidth='0.5', color='black', alpha=0.35)
## minor grid
plt.grid(which='minor', linestyle='--', linewidth='0.5', color='black', alpha=0.2)
#################### SAVE IMAGE
###############################
print('Saving figure...')
temp_name = createFilePath([filepath_plot, (pre_name + '_spectra={0:06}'.format(int(var_time*10)) + '.png')])
print(temp_name)
plt.savefig(temp_name)
plt.close()
print('Figure saved: ' + temp_name)
print(' ')
## create animation
filepath_input = createFilePath([filepath_plot, (pre_name + '_spectra=%06d.png')])
filepath_output = createFilePath([filepath_plot, ('../' + pre_name + '_ani_spectras_combined.mp4')])
ffmpeg_input = ('ffmpeg -start_number 0 -i ' + filepath_input +
' -vb 40M -framerate 40 -vf scale=1440:-1 -vcodec mpeg4 ' + filepath_output)
if bool_debug_mode:
print('--------- Debug: Check FFMPEG input -----------------------------------')
print('Input: \n\t' + filepath_input)
print('Output: \n\t' + filepath_output)
print('FFMPEG input: \n\t' + ffmpeg_input)
print(' ')
else:
print('Animating plots...')
os.system(ffmpeg_input)
print('Animation finished: ' + filepath_output)
# eg. To check: execute the following within the visualising folder
# ffmpeg -start_number 0 -i ./plotSlices/dyna288_spectra=%06d.png -vb 40M -framerate 40 -vf scale=1440:-1 -vcodec mpeg4 ./dyna288_ani_spectra.mp4
## END OF PROGRAM