-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathmain.lua
92 lines (75 loc) · 2.86 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'torch'
require 'paths'
require 'optim'
require 'nn'
require 'xlua'
local DataLoader = require 'dataloader'
local models = require 'models.init'
local Trainer = require 'train'
local opts = require 'opts'
local checkpoints = require 'checkpoints'
local Logger = require 'utils.Logger'
torch.setdefaulttensortype('torch.FloatTensor')
torch.setnumthreads(1)
local opt = opts.parse(arg)
torch.manualSeed(opt.manualSeed)
cutorch.manualSeedAll(opt.manualSeed)
-- Load previous checkpoint, if it exists
local checkpoint, optimState = checkpoints.latest(opt)
-- Create model
local model, criterion = models.setup(opt, checkpoint)
-- Data loading
local trainLoader, valLoader, testLoader = DataLoader.create(opt)
-- The trainer handles the training loop and evaluation on validation set
local trainer = Trainer(model, criterion, opt, optimState)
if opt.testRelease then
print('=> Test Release')
local testAcc, testLoss = trainer:test(opt.epochNumber, testLoader)
print(string.format(' * Results acc: %6.3f, loss: %6.3f', testAcc, testLoss))
return
end
if opt.testOnly then
print('=> Test Only')
local testAcc, testLoss = trainer:test(opt.epochNumber, valLoader)
print(string.format(' * Results acc: %6.3f, loss: %6.3f', testAcc, testLoss))
return
end
local r_step, d_step = 3/opt.nEpochs, 5/opt.nEpochs
local startEpoch = checkpoint and checkpoint.epoch + 1 or opt.epochNumber
local bestAcc = -math.huge
local bestEpoch = 0
local logger = Logger(paths.concat(opt.save, opt.expID, 'full.log'), opt.resume ~= 'none')
logger:setNames{'Train acc.', 'Train loss.', 'Test acc.', 'Test loss.'}
logger:style{'+-', '+-', '+-', '+-'}
for epoch = startEpoch, opt.nEpochs do
-- Train for a single epoch
local trainAcc, trainLoss = trainer:train(epoch, trainLoader)
-- Run model on validation set
local testAcc, testLoss = trainer:test(epoch, valLoader)
-- Write to logger
logger:add{trainAcc, trainLoss, testAcc, testLoss}
print((' Finished epoch # %d'):format(epoch))
print(('\tTrain Loss: %.4f, Train Acc: %.4f'):format(trainLoss, trainAcc))
print(('\tTest Loss: %.4f, Test Acc: %.4f'):format(testLoss, testAcc))
local bestModel = false
if testAcc > bestAcc then
bestModel = true
bestAcc = testAcc
bestEpoch = epoch
checkpoints.saveBest(epoch, model, opt)
print(('\tBest model: %.4f [*]'):format(bestAcc))
end
if epoch % opt.snapshot == 0 then
checkpoints.save(epoch, model, trainer.optimState, opt)
end
collectgarbage()
end
print(string.format(' * Finished acc: %6.3f, Best epoch: %d', bestAcc, bestEpoch))