forked from ghimiredhikura/Complex-YOLOv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_dataset.py
54 lines (42 loc) · 1.34 KB
/
check_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from __future__ import division
import numpy as np
import cv2
import torch
import utils.kitti_bev_utils as bev_utils
from utils.kitti_yolo_dataset import KittiYOLODataset
from torch.utils.data import DataLoader
import utils.config as cnf
if __name__ == "__main__":
img_size=cnf.BEV_WIDTH
# Get dataloader
dataset = KittiYOLODataset(
cnf.root_dir,
split='valid',
mode='TRAIN',
folder='training',
data_aug=True,
)
# Load Dataset
dataloader = DataLoader(
dataset,
1,
shuffle=False,
num_workers=1,
pin_memory=True,
collate_fn=dataset.collate_fn
)
for batch_i, (_, imgs, targets) in enumerate(dataloader):
# Rescale target
targets[:, 2:6] *= img_size
# Get yaw angle
targets[:, 6] = torch.atan2(targets[:, 6], targets[:, 7])
img = imgs.squeeze() * 255
img = img.permute(1,2,0).numpy().astype(np.uint8)
img_display = np.zeros((img_size, img_size, 3), np.uint8)
img_display[...] = img[...]
for c,x,y,w,l,yaw in targets[:, 1:7].numpy():
# Draw rotated box
bev_utils.drawRotatedBox(img_display, x, y, w, l, yaw, cnf.colors[int(c)])
cv2.imshow('img-kitti-bev', img_display)
if cv2.waitKey(0) & 0xff == 27:
break