forked from niemasd/TreeCluster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTreeCluster.py
executable file
·622 lines (570 loc) · 24.8 KB
/
TreeCluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#!/usr/bin/env python3
from math import log
from niemads import DisjointSet
from queue import PriorityQueue,Queue
from treeswift import read_tree_newick
from sys import argv,stderr
VERSION = '1.0.3'
NUM_THRESH = 1000 # number of thresholds for the threshold-free methods to use
VERBOSE = False
# check if user is just printing version
if '--version' in argv:
print("TreeCluster version %s" % VERSION); exit()
# merge two sorted lists into a sorted list
def merge_two_sorted_lists(x,y):
out = list(); i = 0; j = 0
while i < len(x) and j < len(y):
if x[i] < y[j]:
out.append(x[i]); i+= 1
else:
out.append(y[j]); j += 1
while i < len(x):
out.append(x[i]); i += 1
while j < len(y):
out.append(y[j]); j += 1
return out
# merge multiple sorted lists into a sorted list
def merge_multi_sorted_lists(lists):
pq = PriorityQueue()
for l in range(len(lists)):
if len(lists[l]) != 0:
pq.put((lists[l][0],l))
inds = [1 for _ in range(len(lists))]
out = list()
while not pq.empty():
d,l = pq.get(); out.append(d)
if inds[l] < len(lists[l]):
pq.put((lists[l][inds[l]],l))
inds[l] += 1
return out
# get the median of a sorted list
def median(x):
if len(x) % 2 != 0:
return x[int(len(x)/2)]
else:
return (x[int(len(x)/2)]+x[int(len(x)/2)-1])/2
# get the average of a list
def avg(x):
return float(sum(x))/len(x)
# convert p-distance to Jukes-Cantor distance
def p_to_jc(d,seq_type):
b = {'dna':3./4., 'protein':19./20.}[seq_type]
return -1*b*log(1-(d/b))
# cut out the current node's subtree (by setting all nodes' DELETED to True) and return list of leaves
def cut(node):
cluster = list()
descendants = Queue(); descendants.put(node)
while not descendants.empty():
descendant = descendants.get()
if descendant.DELETED:
continue
descendant.DELETED = True
descendant.left_dist = 0; descendant.right_dist = 0; descendant.edge_length = 0
if descendant.is_leaf():
cluster.append(str(descendant))
else:
for c in descendant.children:
descendants.put(c)
return cluster
# initialize properties of input tree and return set containing taxa of leaves
def prep(tree, support, resolve_polytomies=True, suppress_unifurcations=True):
if resolve_polytomies:
tree.resolve_polytomies()
if suppress_unifurcations:
tree.suppress_unifurcations()
leaves = set()
for node in tree.traverse_postorder():
if node.edge_length is None:
node.edge_length = 0
node.DELETED = False
if node.is_leaf():
leaves.add(str(node))
else:
try:
node.confidence = float(str(node))
except:
node.confidence = 100. # give edges without support values support 100
if node.confidence < support: # don't allow low-support edges
node.edge_length = float('inf')
return leaves
# return a sorted list of all unique pairwise leaf distances <= a given threshold
def pairwise_dists_below_thresh(tree,threshold):
pairwise_dists = set()
for node in tree.traverse_postorder():
if node.is_leaf():
node.leaf_dists = {0}; node.min_leaf_dist = 0
else:
children = list(node.children)
for i in range(len(children)-1):
c1 = children[i]
for j in range(i+1,len(children)):
c2 = children[j]
for d1 in c1.leaf_dists:
for d2 in c2.leaf_dists:
pd = d1 + c1.edge_length + d2 + c2.edge_length
if pd <= threshold:
pairwise_dists.add(pd)
node.leaf_dists = set(); node.min_leaf_dist = float('inf')
for c in children:
if c.min_leaf_dist + c.edge_length > threshold:
continue
for d in c.leaf_dists:
nd = d+c.edge_length
if nd < threshold:
node.leaf_dists.add(nd)
if nd < node.min_leaf_dist:
node.min_leaf_dist = nd
return sorted(pairwise_dists)
# split leaves into minimum number of clusters such that the maximum leaf pairwise distance is below some threshold
def min_clusters_threshold_max(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
for node in tree.traverse_postorder():
# if I've already been handled, ignore me
if node.DELETED:
continue
# find my undeleted max distances to leaf
if node.is_leaf():
node.left_dist = 0; node.right_dist = 0
else:
children = list(node.children)
if children[0].DELETED and children[1].DELETED:
cut(node); continue
if children[0].DELETED:
node.left_dist = 0
else:
node.left_dist = max(children[0].left_dist,children[0].right_dist) + children[0].edge_length
if children[1].DELETED:
node.right_dist = 0
else:
node.right_dist = max(children[1].left_dist,children[1].right_dist) + children[1].edge_length
# if my kids are screwing things up, cut out the longer one
if node.left_dist + node.right_dist > threshold:
if node.left_dist > node.right_dist:
cluster = cut(children[0])
node.left_dist = 0
else:
cluster = cut(children[1])
node.right_dist = 0
# add cluster
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
# add all remaining leaves to a single cluster
if len(leaves) != 0:
clusters.append(list(leaves))
return clusters
# median leaf pairwise distance cannot exceed threshold, and clusters must define clades
def min_clusters_threshold_med_clade(tree,threshold,support):
leaves = prep(tree,support)
# bottom-up traversal to compute median pairwise distances
for node in tree.traverse_postorder():
if node.is_leaf():
node.med_pair_dist = 0
node.leaf_dists = [0]
node.pair_dists = list()
else:
children = list(node.children)
l_leaf_dists = [d + children[0].edge_length for d in children[0].leaf_dists]
r_leaf_dists = [d + children[1].edge_length for d in children[1].leaf_dists]
node.leaf_dists = merge_two_sorted_lists(l_leaf_dists,r_leaf_dists)
if len(l_leaf_dists) < len(r_leaf_dists):
across_leaf_dists = [[l+r for r in r_leaf_dists] for l in l_leaf_dists]
else:
across_leaf_dists = [[l+r for l in l_leaf_dists] for r in r_leaf_dists]
node.pair_dists = merge_multi_sorted_lists([children[0].pair_dists,children[1].pair_dists] + across_leaf_dists)
if node.pair_dists[-1] == float('inf'):
node.med_pair_dist = float('inf')
else:
node.med_pair_dist = median(node.pair_dists)
for c in (children[0],children[1]):
del c.leaf_dists; del c.pair_dists
# perform clustering
q = Queue(); q.put(tree.root); roots = list()
while not q.empty():
node = q.get()
if node.med_pair_dist <= threshold:
roots.append(node)
else:
for c in node.children:
q.put(c)
# if verbose, print the clades defined by each cluster
if VERBOSE:
for root in roots:
print("%s;" % root.newick(), file=stderr)
return [[str(l) for l in root.traverse_leaves()] for root in roots]
# average leaf pairwise distance cannot exceed threshold, and clusters must define clades
def min_clusters_threshold_avg_clade(tree,threshold,support):
leaves = prep(tree,support)
# bottom-up traversal to compute average pairwise distances
for node in tree.traverse_postorder():
node.total_pair_dist = 0; node.total_leaf_dist = 0
if node.is_leaf():
node.num_leaves = 1
node.avg_pair_dist = 0
else:
children = list(node.children)
node.num_leaves = sum(c.num_leaves for c in children)
node.total_pair_dist = children[0].total_pair_dist + children[1].total_pair_dist + (children[0].total_leaf_dist*children[1].num_leaves + children[1].total_leaf_dist*children[0].num_leaves)
node.total_leaf_dist = (children[0].total_leaf_dist + children[0].edge_length*children[0].num_leaves) + (children[1].total_leaf_dist + children[1].edge_length*children[1].num_leaves)
node.avg_pair_dist = node.total_pair_dist/((node.num_leaves*(node.num_leaves-1))/2)
# perform clustering
q = Queue(); q.put(tree.root); roots = list()
while not q.empty():
node = q.get()
if node.avg_pair_dist <= threshold:
roots.append(node)
else:
for c in node.children:
q.put(c)
# if verbose, print the clades defined by each cluster
if VERBOSE:
for root in roots:
print("%s;" % root.newick(), file=stderr)
return [[str(l) for l in root.traverse_leaves()] for root in roots]
# total branch length cannot exceed threshold, and clusters must define clades
def min_clusters_threshold_sum_bl_clade(tree,threshold,support):
leaves = prep(tree,support)
# compute branch length sums
for node in tree.traverse_postorder():
if node.is_leaf():
node.total_bl = 0
else:
node.total_bl = sum(c.total_bl + c.edge_length for c in node.children)
# perform clustering
q = Queue(); q.put(tree.root); roots = list()
while not q.empty():
node = q.get()
if node.total_bl <= threshold:
roots.append(node)
else:
for c in node.children:
q.put(c)
# if verbose, print the clades defined by each cluster
if VERBOSE:
for root in roots:
print("%s;" % root.newick(), file=stderr)
return [[str(l) for l in root.traverse_leaves()] for root in roots]
# total branch length cannot exceed threshold
def min_clusters_threshold_sum_bl(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
for node in tree.traverse_postorder():
if node.is_leaf():
node.left_total = 0; node.right_total = 0
else:
children = list(node.children)
if children[0].DELETED and children[1].DELETED:
cut(node); continue
if children[0].DELETED:
node.left_total = 0
else:
node.left_total = children[0].left_total + children[0].right_total + children[0].edge_length
if children[1].DELETED:
node.right_total = 0
else:
node.right_total = children[1].left_total + children[1].right_total + children[1].edge_length
if node.left_total + node.right_total > threshold:
if node.left_total > node.right_total:
cluster = cut(children[0])
node.left_total = 0
else:
cluster = cut(children[1])
node.right_total = 0
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
if len(leaves) != 0:
clusters.append(list(leaves))
return clusters
# single-linkage clustering using Metin's cut algorithm
def single_linkage_cut(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
# find closest leaf below (dist,leaf)
for node in tree.traverse_postorder():
if node.is_leaf():
node.min_below = (0,node.label)
else:
node.min_below = min((c.min_below[0]+c.edge_length,c.min_below[1]) for c in node.children)
# find closest leaf above (dist,leaf)
for node in tree.traverse_preorder():
node.min_above = (float('inf'),None)
if node.is_root():
continue
# min distance through sibling
for c in node.parent.children:
if c != node:
dist = node.edge_length + c.edge_length + c.min_below[0]
if dist < node.min_above[0]:
node.min_above = (dist,c.min_below[1])
# min distance through grandparent
if not c.parent.is_root():
dist = node.edge_length + node.parent.min_above[0]
if dist < node.min_above[0]:
node.min_above = (dist,node.parent.min_above[1])
# find clusters
for node in tree.traverse_postorder(leaves=False):
# assume binary tree here (prep function guarantees this)
l_child,r_child = node.children
l_dist = l_child.min_below[0] + l_child.edge_length
r_dist = r_child.min_below[0] + r_child.edge_length
a_dist = node.min_above[0]
bad = [0,0,0] # left, right, up
if l_dist + r_dist > threshold:
bad[0] += 1; bad[1] += 1
if l_dist + a_dist > threshold:
bad[0] += 1; bad[2] += 1
if r_dist + a_dist > threshold:
bad[1] += 1; bad[2] += 1
# cut either (or both) children
for i in [0,1]:
if bad[i] == 2:
cluster = cut(node.children[i])
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
# cut above (equals cutting me)
if bad[2] == 2: # if cutting above, just cut me
cluster = cut(node)
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
if len(leaves) != 0:
clusters.append(list(leaves))
return clusters
# single-linkage clustering using Niema's union algorithm
def single_linkage_union(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
# find closest leaf below (dist,leaf)
for node in tree.traverse_postorder():
if node.is_leaf():
node.min_below = (0,node.label)
else:
node.min_below = min((c.min_below[0]+c.edge_length,c.min_below[1]) for c in node.children)
# find closest leaf above (dist,leaf)
for node in tree.traverse_preorder():
node.min_above = (float('inf'),None)
if node.is_root():
continue
# min distance through sibling
for c in node.parent.children:
if c != node:
dist = node.edge_length + c.edge_length + c.min_below[0]
if dist < node.min_above[0]:
node.min_above = (dist,c.min_below[1])
# min distance through grandparent
if not c.parent.is_root():
dist = node.edge_length + node.parent.min_above[0]
if dist < node.min_above[0]:
node.min_above = (dist,node.parent.min_above[1])
# set up Disjoint Set
ds = DisjointSet(leaves)
for node in tree.traverse_preorder(leaves=False):
# children to min above
for c in node.children:
if c.min_below[0] + c.edge_length + node.min_above[0] <= threshold:
ds.union(c.min_below[1], node.min_above[1])
for i in range(len(node.children)-1):
c1 = node.children[i]
for j in range(i+1, len(node.children)):
c2 = node.children[j]
if c1.min_below[0] + c1.edge_length + c2.min_below[0] + c2.edge_length <= threshold:
ds.union(c1.min_below[1], c2.min_below[1])
return [list(s) for s in ds.sets()]
# min_clusters_threshold_max, but all clusters must define a clade
def min_clusters_threshold_max_clade(tree,threshold,support):
leaves = prep(tree, support, resolve_polytomies=False)
# compute leaf distances and max pairwise distances
for node in tree.traverse_postorder():
if node.is_leaf():
node.leaf_dist = 0; node.max_pair_dist = 0
else:
node.leaf_dist = float('-inf'); second_max_leaf_dist = float('-inf')
for c in node.children: # at least 2 children because of suppressing unifurcations
curr_dist = c.leaf_dist + c.edge_length
if curr_dist > node.leaf_dist:
second_max_leaf_dist = node.leaf_dist; node.leaf_dist = curr_dist
elif curr_dist > second_max_leaf_dist:
second_max_leaf_dist = curr_dist
node.max_pair_dist = max([c.max_pair_dist for c in node.children] + [node.leaf_dist + second_max_leaf_dist])
# perform clustering
q = Queue(); q.put(tree.root); roots = list()
while not q.empty():
node = q.get()
if node.max_pair_dist <= threshold:
roots.append(node)
else:
for c in node.children:
q.put(c)
# if verbose, print the clades defined by each cluster
if VERBOSE:
for root in roots:
print("%s;" % root.newick(), file=stderr)
return [[str(l) for l in root.traverse_leaves()] for root in roots]
# pick the threshold between 0 and "threshold" that maximizes number of (non-singleton) clusters
def argmax_clusters(method,tree,threshold,support):
from copy import deepcopy
assert threshold > 0, "Threshold must be positive"
#thresholds = pairwise_dists_below_thresh(deepcopy(tree),threshold)
thresholds = [i*threshold/NUM_THRESH for i in range(NUM_THRESH+1)]
best = None; best_num = -1; best_t = -1
for i,t in enumerate(thresholds):
if VERBOSE:
print("%s%%"%str(i*100/len(thresholds)).rstrip('0'),end='\r',file=stderr)
clusters = method(deepcopy(tree),t,support)
num_non_singleton = len([c for c in clusters if len(c) > 1])
if num_non_singleton > best_num:
best = clusters; best_num = num_non_singleton; best_t = t
print("\nBest Threshold: %f"%best_t,file=stderr)
return best
# cut all branches longer than the threshold
def length(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
for node in tree.traverse_postorder():
# if I've already been handled, ignore me
if node.DELETED:
continue
# if i'm screwing things up, cut me
if node.edge_length is not None and node.edge_length > threshold:
cluster = cut(node)
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
# add all remaining leaves to a single cluster
if len(leaves) != 0:
clusters.append(list(leaves))
return clusters
# same as length, and clusters must define a clade
def length_clade(tree,threshold,support):
leaves = prep(tree,support)
# compute max branch length in clades
for node in tree.traverse_postorder():
if node.is_leaf():
node.max_bl = 0
else:
node.max_bl = max([c.max_bl for c in node.children] + [c.edge_length for c in node.children])
# perform clustering
q = Queue(); q.put(tree.root); roots = list()
while not q.empty():
node = q.get()
if node.max_bl <= threshold:
roots.append(node)
else:
for c in node.children:
q.put(c)
# if verbose, print the clades defined by each cluster
if VERBOSE:
for root in roots:
print("%s;" % root.newick(), file=stderr)
return [[str(l) for l in root.traverse_leaves()] for root in roots]
# cut tree at threshold distance from root (clusters will be clades by definition) (ignores support threshold if branch is below cutting point)
def root_dist(tree,threshold,support):
leaves = prep(tree,support)
clusters = list()
for node in tree.traverse_preorder():
# if I've already been handled, ignore me
if node.DELETED:
continue
if node.is_root():
node.root_dist = 0
else:
node.root_dist = node.parent.root_dist + node.edge_length
if node.root_dist > threshold:
cluster = cut(node)
if len(cluster) != 0:
clusters.append(cluster)
for leaf in cluster:
leaves.remove(leaf)
# add all remaining leaves to a single cluster
if len(leaves) != 0:
clusters.append(list(leaves))
return clusters
# cut tree at threshold distance from the leaves (if tree not ultrametric, max = distance from furthest leaf from root, min = distance from closest leaf to root, avg = average of all leaves)
def leaf_dist(tree,threshold,support,mode):
modes = {'max':max,'min':min,'avg':avg}
assert mode in modes, "Invalid mode. Must be one of: %s" % ', '.join(sorted(modes.keys()))
dist_from_root = modes[mode](d for u,d in tree.distances_from_root(internal=False)) - threshold
return root_dist(tree,dist_from_root,support)
def leaf_dist_max(tree,threshold,support):
return leaf_dist(tree,threshold,support,'max')
def leaf_dist_min(tree,threshold,support):
return leaf_dist(tree,threshold,support,'min')
def leaf_dist_avg(tree,threshold,support):
return leaf_dist(tree,threshold,support,'avg')
METHODS = {
'max': min_clusters_threshold_max,
'max_clade': min_clusters_threshold_max_clade,
'sum_branch': min_clusters_threshold_sum_bl,
'sum_branch_clade': min_clusters_threshold_sum_bl_clade,
'avg_clade': min_clusters_threshold_avg_clade,
'med_clade': min_clusters_threshold_med_clade,
'single_linkage': single_linkage_cut,
'single_linkage_cut': single_linkage_cut,
'single_linkage_union': single_linkage_union,
'length': length,
'length_clade': length_clade,
'root_dist': root_dist,
'leaf_dist_max': leaf_dist_max,
'leaf_dist_min': leaf_dist_min,
'leaf_dist_avg': leaf_dist_avg
}
THRESHOLDFREE = {'argmax_clusters':argmax_clusters}
if __name__ == "__main__":
# parse user arguments
import argparse
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-i', '--input', required=False, type=str, default='stdin', help="Input Tree File")
parser.add_argument('-o', '--output', required=False, type=str, default='stdout', help="Output File")
parser.add_argument('-t', '--threshold', required=True, type=float, help="Length Threshold")
parser.add_argument('-s', '--support', required=False, type=float, default=float('-inf'), help="Branch Support Threshold")
parser.add_argument('-m', '--method', required=False, type=str, default='max_clade', help="Clustering Method (options: %s)" % ', '.join(sorted(METHODS.keys())))
parser.add_argument('-tf', '--threshold_free', required=False, type=str, default=None, help="Threshold-Free Approach (options: %s)" % ', '.join(sorted(THRESHOLDFREE.keys())))
parser.add_argument('-v', '--verbose', action='store_true', help="Verbose Mode")
parser.add_argument('--version', action='store_true', help="Display Version")
args = parser.parse_args()
assert args.method.lower() in METHODS, "ERROR: Invalid method: %s" % args.method
assert args.threshold_free is None or args.threshold_free in THRESHOLDFREE, "ERROR: Invalid threshold-free approach: %s" % args.threshold_free
assert args.threshold >= 0, "ERROR: Length threshold must be at least 0"
assert args.support >= 0 or args.support == float('-inf'), "ERROR: Branch support must be at least 0"
VERBOSE = args.verbose
if args.input == 'stdin':
from sys import stdin; infile = stdin
elif args.input.lower().endswith('.gz'):
from gzip import open as gopen; infile = gopen(args.input)
else:
infile = open(args.input)
if args.output == 'stdout':
from sys import stdout; outfile = stdout
else:
outfile = open(args.output,'w')
trees = list()
for line in infile:
if isinstance(line,bytes):
l = line.decode().strip()
else:
l = line.strip()
trees.append(read_tree_newick(l))
# run algorithm
for t,tree in enumerate(trees):
if args.threshold_free is None:
clusters = METHODS[args.method.lower()](tree,args.threshold,args.support)
else:
clusters = THRESHOLDFREE[args.threshold_free](METHODS[args.method.lower()],tree,args.threshold,args.support)
outfile.write('SequenceName\tClusterNumber\n')
cluster_num = 1
for cluster in clusters:
if len(cluster) == 1:
outfile.write('%s\t-1\n' % list(cluster)[0])
else:
for l in cluster:
outfile.write('%s\t%d\n' % (l,cluster_num))
cluster_num += 1
outfile.close()