forked from leichtle/computational-diagnostic-paths
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
64 lines (51 loc) · 2.94 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Extract features suitable for bayesian variable selection.
"""
import argparse
import ast
import logging
import pandas as pd
from sklearn.pipeline import Pipeline
from src.common.df_csv_writing import write_df_to_csv
from src.common.json_logging import setup_logging
from src.features.diagnoses.diagnoses import MissingDiagnosisRowDropper
from src.features.filter.filter_columns import NonNumericColumnDropper
from src.features.labels.labels import BinaryLabelExtractor
setup_logging("src/common/logging.json") # setup logger
logger = logging.getLogger(__name__)
if __name__ == "__main__":
# configure parser and parse arguments
parser = argparse.ArgumentParser(description='Extract features suitable for bayesian variable seection.')
parser.add_argument('--dataset', type=str, help='The path to the dataset file', required=True)
parser.add_argument('--csv_separator', type=str, help='The separator of the data columns', default=',')
parser.add_argument('--diagnosis_col_name', type=str, default='HDIA', help='The name of the diagnosis column in the data frame.')
parser.add_argument('--diagnosis_code_min', type=int, default=200, help='Lowest ICD-10 code to be considered positive diagnosis.')
parser.add_argument('--diagnosis_code_max', type=int, default=259, help='Highest ICD-10 code to be considered positive diagnosis.')
parser.add_argument('--single-diagnosis', action='store_true', help="If the diagnosis field contains a single diagnosis or a list.")
args = parser.parse_args()
dataset_path = args.dataset
csv_separator = args.csv_separator
diagnosis_col_name = args.diagnosis_col_name
diagnosis_code_min = args.diagnosis_code_min
diagnosis_code_max = args.diagnosis_code_max
single_diagnosis = args.single_diagnosis
logger.info(str({"message": "NEW FEATURE",
"path": dataset_path}))
logger.info(str({"message": "Load dataset",
"path": dataset_path}))
if single_diagnosis:
df = pd.read_csv(dataset_path, header=0, sep=csv_separator) # read data from csv
else:
df = pd.read_csv(dataset_path, header=0, sep=csv_separator, converters={diagnosis_col_name: ast.literal_eval}) # read data from csv
# prepare pipeline and run it
inclusion_labels = {'I' + str(number) for number in range(diagnosis_code_min, diagnosis_code_max)} # range of ICD10 codes for positive diagnosis
pipeline = Pipeline([
('drop_rows_without_diagnosis', MissingDiagnosisRowDropper(diagnosis_col_name=diagnosis_col_name)),
('extract_binary_label_from_diagnoses', BinaryLabelExtractor(extract_from_column=diagnosis_col_name, inclusion_labels=inclusion_labels)),
('drop_non_numerical_columns', NonNumericColumnDropper())
])
df = pipeline.fit_transform(df)
# write dataset to file
write_df_to_csv(df=df, store_path='data/processed/', initial_path=dataset_path, file_appendix="_label")