-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path12-MixtureModels.tex
executable file
·38 lines (33 loc) · 2.01 KB
/
12-MixtureModels.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\documentclass[main]{subfiles}
\begin{document}
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
% summarizes lecture
% author:
\section{Mixture Models}
This is the chapter on Mixture Models.
\subsection{k-Means Algorithm}
\subsection{Mixture Models}
\subsection{Expectation Maximization Algorithm}
\subsection{Convergence Proof of EM Algorithm}
\subsection{Readings}
\subsection{Problem Solving Procedures}
\subsubsection{EM for non-gaussian mixture}
\paragraph{Problem setting}
You have to derive the EM algorithm for a mixture of non-gaussian distributions.
You are given the model behind the EM in the form:
\[p(x) = \sum\limits^n_{j=1}\pi_j Pr_{\text{non-gaussian}}\]
\paragraph{Solution}
\begin{enumerate}
\item Write down the log likelihood function, which is
\[L(X,\{\text{parameters of }Pr_{non-gaussian} u_js\}) = \sum\limits^n_{i=1} \log \left( p(x_i)\right)\]
Let us assume that the parameters of \(Pr_{non-gaussian}\) are \(u_js\).
\item Write down the \(\gamma_j(x_i) = p(z_j = j | x_i)\) which is the probability that \(x_i\) was generated from \(j^{th}\) distribution of the mixture.
\[\gamma_j(x_i) = p(z_i = j | x_i) = \frac{p(x_i|z_i = j) p(z_i = j)}{p(x_i)} = \frac{p(x_i|z_i = j) p(z_i = j)}{\sum\limits^n_{k=1}p(x_i|z_i = k) p(z_i = k)} \\
= \frac{\pi_i L(X,u_js)}{\sum^n_{k=1}\pi_k L(X,u_js)} \]
\item \textbf{To get optimal }\(\mathbf{u_js}\), derive the likelihood function \(L(x,u_js)\) by each parameter \(u_j\).
You will find out that it is something like
\[\nabla x_j L(X,u_js) = \sum\limits^n_{i=1}\frac{1}{Pr_{non-gaussian}} \cdot (\nabla u_j Pr_{non-gaussian})\](possibly replace by \(\gamma_j(x_i)\) (above and below) leaving back some factor around it). Solve for the parameter \(u_j\).
\item \textbf{Estimate the \(\pi\) parameters} by doing a Lagrange optimization on the log likelihood function and constraining the optimization by \(\lambda \left(\sum\limits^k_{j=1}\pi_j -1\right) \) as \(\sum\limits^k_{j=1}\pi_j = 1\)
\item Put the \(\lambda\) into the formula and find the formula for \(\pi_j\).
\end{enumerate}
\end{document}