-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path15-Cheatsheet2013.tex
executable file
·304 lines (267 loc) · 11 KB
/
15-Cheatsheet2013.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
\documentclass[main]{subfiles}
\begin{document}
%% Big thanks go to Helen Oleynikova who attended Machine Learning 2013
%% Tex source of the cheat sheet found at https://www.amiv.ethz.ch/studium/unterlagen/65
%change spacings according to your preferences (readability vs. content)
% Syntax : \titlespacing*{<command>}{<left>}{<before-sep>}{<after-sep>}
\titlespacing*{\section}
{0pt}{0.5ex plus 1ex minus .2ex}{0.3ex plus .2ex}
\titlespacing*{\subsection}
{0pt}{0.5ex plus 1ex minus .2ex}{0.3ex plus .2ex}
\titlespacing*{\subsubsection}
{0pt}{0.5ex plus 1ex minus .2ex}{0.3ex plus .2ex}
\setlength{\topmargin}{10mm-1in} %{20mm} %Topmargin
\setlength{\oddsidemargin}{10mm-1in} %{35mm} %Left margin
\setlength{\headsep}{2mm} %Body starts 55mm from top sheet edge
\setlength{\textheight}{277mm} %Best {140mm}
\setlength{\footskip}{0mm} %{15mm}
\setlength{\textwidth}{185mm} %{212mm}
\setlength{\itemsep}{0pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\begin{landscape}
\section{Cheat sheet 2013}
%VISUALIZE LAYOUT AND LAYOUTVALUES:
%\pagevalues
%\newpage asd\newpage
%\layout \newpage adsf \newpage
%\newpage
%
%
\begin{multicols}{3}
%%%%%%%%%%%%%%%%%%%%%%%%%
\scriptsize
%\footnotesize
%\small
\subsection{Probability}
\subsubsection{Probability Rules}
%%%
\begin{eqnarray}
&\text{Sum Rule}& P(X=x_i) = \sum_{j=1}^{J} p(X=x_i,Y=y_i)\\
&\text{Product rule}& P(X, Y) = P(Y|X) P(X) \\
&\text{Independence}& P(X, Y) = P(X)P(Y) \\
&\text{Bayes' Rule}& P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \\
&\text{Conditional independence}& X\bot Y|Z \\
& & P(X,Y|Z) = P(X|Z)P(Y|Z) \\
& & P(X|Z,Y) = P(X|Z)
\end{eqnarray}
\subsubsection{Expectation}
\begin{eqnarray}
E(X) &=& \int_{\inf}^{\inf} x p(x) dx \\
\sigma^2(X) &=& E(x^2)-{E(x)}^2 \\
\sigma^2(X) &=& \int_x (x-\mu_x)^2 p(x) dx \\
Cov(X, Y) &=& \int_x \int_y p(x,y) (x-\mu_x)(y-\mu_y) dx dy
\end{eqnarray}
\subsubsection{Gaussian}
\begin{equation}
p(X|\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})
\end{equation}
\subsubsection{Kernels}
Requirements: Symmetric ($k(x,y)=k(y,x)$) \\ positive semi-definite $K$.
\begin{eqnarray}
k(x,y) &=& a k_1(x,y) + b k_2(x,y)\\
k(x,y) &=& k_1(x,y)k_2(x,y)\\
k(x,y) &=& f(x) f(y)\\
k(x,y) &=& k_3(\phi(x), \phi(y))
\end{eqnarray}
\begin{eqnarray}
\text{Linear} & k(x,y) =& x^\top y\\
\text{Polynomial} & k(x,y) =& (x^\top y + 1)^d\\
\text{Gaussian RBF} & k(x,y) =& \exp(\frac{-\|x-y\|^2_2}{h^2})\\
\text{Sigmoid (Neural Net)} & k(x,y) =& \tanh(k x^\top y - b)
\end{eqnarray}
\subsection{Regression}
\textbf{Linear Regression:}
\begin{equation}
\min_{w} \sum_{i=1}^n (y_i - w^\top x_i)^2
\end{equation}
Closed form solution: $w^* = (x^\top x)^{-1} x^\top y$ \\
\textbf{Ridge Regression:}
\begin{equation}
\min_{w} \sum_{i=1}^n (y_i - w^\top x_i)^2 + \lambda \|w\|_2^2
\end{equation}
Closed form solution: $w^* = (x^\top x + \lambda I)^{-1} x^\top y$ \\
\textbf{Lasso Regression} (sparse):
\begin{equation}
\min_{w} \sum_{i=1}^n (y_i - w^\top x_i)^2 + \lambda \|w\|_1
\end{equation}
\textbf{Kernelized Linear Regression:}
\begin{equation}
\min_{\alpha} \|K\alpha - y \|_2^2 + \lambda \alpha^\top K \alpha
\end{equation}
Closed form solution: $\alpha = (K-\lambda I)^{-1} y $ \\
\subsection{Classification}
\begin{eqnarray}
\text{0/1 Loss} & w^* =& \argmin_w \sum_{i=1}^n [y_i \neq sign(w^\top x_i)] \\
\text{Perceptron} & w^* =& \argmin_w \sum_{i=1}^n [\max(0, y_i w^\top x_i)]
\end{eqnarray}
\subsubsection{SVM}
Primal, constrained:
\begin{equation}
\min_{w} w^\top w + C \sum_{i=1}^{n} \xi_i, \text{ s.t. } y_i w^\top x_i \geq 1 - \xi_i, \xi_i \geq 0
\end{equation}
Primal, unconstrained:
\begin{equation}
\min_{w} w^\top w + C \sum_{i=1}^{n} \max(0, 1-y_i w^\top x_i) \text{ (hinge loss)}
\end{equation}
Dual:
\begin{equation}
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j, \text{ s.t. } 0 \geq \alpha_i \geq C
\end{equation}
Dual to primal: $w^* = \sum_{i=1}^{n} \alpha^*_i y_i x_i$, $\alpha_i > 0$: support vector.
\subsubsection{Kernelized SVM}
\begin{equation}
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j), \text{ s.t. } 0 \geq \alpha_i \geq C
\end{equation}
Classify: $y = sign(\sum_{i=1}^{n} \alpha_i y_i k(x_i, x))$
\subsection{Misc}
\textbf{Lagrangian:} $f(x,y) s.t. g(x,y) = c$
\begin{equation}
\mathcal{L}(x, y, \gamma) = f(x,y) - \gamma ( g(x,y)-c)
\end{equation}
\textbf{Parametric learning}: model is parameterized with a finite set of parameters, like linear regression, linear SVM, etc. \\ \\
\textbf{Nonparametric learning}: models grow in complexity with quantity of data: kernel SVM, k-NN, etc.
\subsection{Probabilistic Methods:}
\subsubsection{MLE}
Least Squares, Gaussian Noise
\begin{equation}
L(w) = -\log(P(y_1 ... y_n | x_1 ... x_n, w)) = \frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^{n} \frac{(y_i-w^\top x_i)^2}{2\sigma^2}
\end{equation}
\begin{equation}
\argmax_w P(y|x, w) = \argmin_w L(w) = \argmin_w \sum_{i=1}^{n} (y_i-w^\top x_i)^2
\end{equation}
\subsubsection{MAP}
Ridge regression, Gaussian prior on weights
\begin{equation}
\argmax_w P(w) \prod_{i}^{n} P(y_i|x_i,w) =
\argmin_w \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^\top x_i) + \frac{1}{2 \beta^2}\sum_{i=1}^{n}w_i^2
\end{equation}
$P(w)$ or $P(\theta)$ - conjugate prior (beta, Gaussian) (posterior same class as prior) \\
$P(y_i|\theta)$ - likelihood function (binomial, multinomial, Gaussian) \\
\textbf{Beta distribution}: $P(\theta) = Beta(\theta; \alpha_1, \alpha_2) \propto \theta^{\alpha_1 - 1}(1-\theta)^{\alpha_2-1}$
\subsubsection{Logistic Regression}
MLE with Bernoulli noise
\begin{eqnarray}
\text{MLE: } \argmin_w L(w) &=& \sum_{i=1}^{n} \log(1+\exp(-y_i w^\top x_i)) \\
\text{MAP: } &+& \left\lbrace \lambda \|w\|_2^2, \lambda \|w\|_1 \right\rbrace
\end{eqnarray}
Classification: $P(y|x,\hat{w} = \frac{1}{1+\exp(-y\hat{w}^\top x)}$
\subsubsection{Bayesian Decision Theory}
\begin{equation}
a^* = \argmin_{a \in A} E_y[C(y,a)|x]
\end{equation}
\subsubsection{Bayesian Model Averaging (BMA)}
Ridge regression, but with probabilities
\begin{eqnarray}
P(y|x,D) &=& \int P(y|x,w)P(w|D)dw \\
P(w) &=& \mathcal{N}(w; 0, \sigma_w^2) \\
P(y|w,x) &=& \mathcal{N}(y; wx, \sigma_y^2) \\
P(w|x,y) &=& \mathcal{N}(w; \mu_{w|y}, \sigma_{w|y}^2)
\end{eqnarray}
\begin{eqnarray}
\mu_{w|y} = \frac{x y \sigma_w^2}{x^2 \sigma_w^2 + \sigma_y^2} \\
\sigma_{w|y}^2 = \frac{\sigma_w^2 \sigma_y^2}{x^2\sigma_w^2 + \sigma_y^2}
\end{eqnarray}
\begin{eqnarray}
\text{MAP} P(y'|x',\hat{w}) &=& \mathcal{N}(y';x'\mu_{w|y},\sigma_y^2) \\
\text{BMA} P(y'|x',x,y) &=& \mathcal{N}(y';x'\mu_{w|y},\sigma_y^2 + x'^2 \sigma_{w|y}^2)
\end{eqnarray}
\subsubsection{Bayesian Linear Regression}
\begin{eqnarray}
\mathcal{N}(x_i, \mu_V, \Sigma_{VV}) &=& \frac{1}{\sqrt{(2\pi)^d \Sigma_{VV}}} \exp(-\frac{1}{2}(x-\mu_V)^\top \Sigma_{VV}^{-1} (x-\mu_V)) \\
P(y|x,y_A) &=& \mathcal{N}(y; \mu_{y|A}, \sigma_{y|A}^2) \\
\mu_{y|A} &=& \sum_{x, A} \Sigma_{AA}^{-1} y_A \\
\Sigma_{VV} &=& \beta^2 X X^\top + \sigma^2 I \\
\sigma_{y|A}^2 &=& \Sigma_{xx} - \Sigma_{xA} \Sigma_{AA}^{-1} \Sigma_{Ax}
\end{eqnarray}
\subsubsection{Gaussian Process (Kernelized BLR)}
Replace $\Sigma_{VV} = K + \sigma^2 I_n$.
\subsection{Active Learning}
D-optimality: $x_t = \argmax_{x\in X} \sigma^2_{t-1}(x)$ (pick the most uncertain sample) \\
A-optimality: $x_t = \argmax_{x\in X} \int[\sigma^2_{t}(x)-\sigma^2_{t-1}(x)]dx$ (pick the sample that'll reduce the variance the most)
\subsection{Ensemble Methods}
%\subsection{Ensemble Methods}
Use combination of simple hypotheses (weak learners) to create one strong learner.
\begin{equation}
f(x) = \sum_{i=1}^{n} \beta_i h_i(x)
\end{equation}
\textbf{Bagging}: train weak learners on random subsamples with equal weights. \\
\textbf{Boosting}: train on all data, but reweigh misclassified samples higher.
\subsubsection{Decision Trees}
\textbf{Stumps}: partition linearly along 1 axis
\begin{equation}
h(x) = sign(a x_i - t)
\end{equation}
\textbf{Decision Tree}: recursive tree of stumps, leaves have labels. To train, either label if leaf's data is pure enough, or split data based on score.
\subsubsection{Ada Boost}
Effectively minimize exponential loss.
\begin{equation}
f^*(x) = \argmin_{f\in F} \sum_{i=1}^{n} \exp(-y_i f(x_i))
\end{equation}
Train $m$ weak learners, greedily selecting each one
\begin{equation}
(\beta_i, h_i) = \argmin_{\beta,h} \sum_{i=1}^{n} \exp(-y_i (f_{i-1} (x_j) + \beta h(x_j)))
\end{equation}
\subsection{Generative Methods}
\textbf{Discriminative} - estimate $P(y|x)$ - conditional. \\
\textbf{Generative} - estimate $P(y, x)$ - joint, model data generation.
\subsubsection{Naive Bayes}
All features independent.
\begin{eqnarray}
P(y|x) = \frac{1}{Z} P(y) P(x|y), Z = \sum_{y} P(y) P(x|y) \\
y = \argmax_{y'} P(y'|x) = \argmax_{y'} \hat{P}(y') \prod_{i=1}^{d} \hat{P}(x_i|y')
\end{eqnarray}
\textbf{Discriminant Function}
\begin{equation}
f(x) = \log(\frac{P(y=1|x)}{P(y==1|x)}), y=sign(f(x))
\end{equation}
\subsubsection{Fischer's Linear Discriminant Analysis (LDA)}
\begin{eqnarray}
&& c=2, p=0.5, \hat{\Sigma}_- = \hat{\Sigma}_+ = \hat{\Sigma} \\
y &=& sign(w^\top x + w_0) \\
w &=& \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}_-) \\
w_0 &=& \frac{1}{2}(\hat{\mu}_-^\top \Sigma^{-1} \hat{\mu}_- - \hat{\mu}_+^\top \Sigma^{-1} \hat{\mu}_+)
\end{eqnarray}
\subsection{Unsupervised Learning}
\subsubsection{K-means}
(clustering = classification)
\begin{equation}
L(\mu) = \sum_{i=1}^{n} \min_{j\in\{1...k\}} \|x_i - \mu_y \|_2^2
\end{equation}
\textbf{Lloyd's Heuristic}: (1) assign each $x_i$ to closest cluster \\
(2) recalculate means of clusters.
\subsubsection{Gaussian Mixture Modeling}
Same as Bayes, but class label $z$ unobserved.
\begin{equation}
(\mu^*, \Sigma^*, w^*) = \argmin -\sum_i log \sum_{j=1}^{k} w_j \mathcal{N}(x_i|\mu_i,\Sigma_j)
\end{equation}
\subsubsection{EM Algorithm}
\textbf{E-step}: expectation: pick clusters for points.
Calculate $\gamma_j^{(t)}(x_i)$ for each $i$ and $j$\\
\textbf{M-Step}: maximum likelihood: adjust clusters to best fit points.\\
\begin{eqnarray}
\omega^{(t)}_j &\leftarrow& \frac{1}{n}\sum_{i=1}^n \gamma_j^{(t)}(x_i) \\
\mu_j^{(t)} &\leftarrow& \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i)}{\sum_{i=1}^n \gamma^{(t)}(x_i)} \\
\Sigma^{(t)}_j &\leftarrow& \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i-\mu_j^{(t)})(x_i-\mu_j^{(t)})^\top}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}
\end{eqnarray}
\subsubsection{PCA}
(dimensional reduction = regression)
\begin{eqnarray}
\Sigma = \frac{1}{n}\sum_{i=1}^n x_i x_j^\top, \;\;
\mu = \frac{1}{n}\sum_{i=1}^n x_i = 0 \\
(W, z_1, ..., z_n) = \argmin \sum_{i=1}^n \|Wz_i - x_i\|_2^2
\end{eqnarray}
$W$ is orthogonal, $W = (v_1 | ... | v_k)$ and $z_i = w^\top x_i$
\begin{equation}
\Sigma = \sum_{i=1}^{d} \lambda_i v_i v_i^\top \;\; \lambda_1 \geq ... \geq \lambda_d \geq 0
\end{equation}
\subsubsection{Kernel PCA}
\begin{eqnarray}
\alpha_i^* = \argmax_{\alpha^\top K \alpha = 1} = \alpha^\top K^\top K \alpha \\
\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}}\frac{v_i}{\|v_i\|_2}, \;\;
K = \sum_{i=1}^n \lambda_i v_i v_i^\top
\end{eqnarray}
\end{multicols}
\end{landscape}
\todo[inline]{We could use colors in the cheat sheet to improve searchability}
\end{document}