This repository has been archived by the owner on Aug 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
754 lines (644 loc) · 29.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import torch # noqa
torch.multiprocessing.set_sharing_strategy('file_system')
# with cudnn enabled, validation with fixed params breaks
# cudnn speedups for PyG seem to be negligible anyway
torch.backends.cudnn.enabled = False
import sacred # noqa
from sacred.observers import MongoObserver, TelegramObserver # noqa
from sacred.stflow import LogFileWriter # noqa
import logging # noqa
import os # noqa
import os.path as osp # noqa
import shutil # noqa
from torch_geometric.data import DataLoader # noqa
from tensorboardX import SummaryWriter # noqa
import sys # noqa
import atexit # noqa
import tarfile # noqa
import argparse # noqa
import json # noqa
import time # noqa
from time import time as now # noqa
import numpy as np # noqa
import datetime # noqa
import pytz # noqa
from funlib.segment.arrays import replace_values # noqa
from gnn_agglomeration import utils # noqa
from gnn_agglomeration.pyg_datasets import * # noqa
from gnn_agglomeration.nn.models import * # noqa
from gnn_agglomeration.experiment import ex # noqa
from gnn_agglomeration.config import Config # noqa
# TODO does this work together with sacred?
# Init logging module
logging.basicConfig(level=logging.INFO)
@ex.main
@ex.capture
@LogFileWriter(ex)
def main(_config, _run, _log):
# Check for a comment, if none is given raise error
if _run.meta_info['options']['--comment'] is None:
raise ValueError('You need to specify a comment with -c, --comment')
config = argparse.Namespace(**_config)
_log.info('Logging to {}'.format(config.run_abs_path))
# -----------------------------------------------
# ---------------- CREATE SETUP -----------------
# -----------------------------------------------
# make necessary directory structure
if not os.path.isdir(config.run_abs_path):
os.makedirs(config.run_abs_path)
# clear old stuff from the run dir, if it's not a restart
summary_dir = os.path.join(config.run_abs_path, config.summary_dir)
model_dir = os.path.join(config.run_abs_path, config.model_dir)
outputs_dir = os.path.join(config.run_abs_path, config.outputs_dir)
if not config.load_model:
if os.path.isdir(summary_dir):
shutil.rmtree(summary_dir)
if os.path.isdir(model_dir):
shutil.rmtree(model_dir)
if os.path.isdir(outputs_dir):
shutil.rmtree(outputs_dir)
# make dir structure in temp dir
os.makedirs(summary_dir)
os.makedirs(model_dir)
os.makedirs(os.path.join(outputs_dir, 'train'))
os.makedirs(os.path.join(outputs_dir, 'val'))
# Pass the path of tensorboardX summaries to sacred
if config.write_summary:
_run.info["tensorflow"] = dict()
_run.info["tensorflow"]["logdirs"] = [os.path.join(
config.run_abs_path, config.summary_dir)]
# set up the summary writer for tensorboardX
train_writer = SummaryWriter(os.path.join(
config.run_abs_path, 'summary', 'training'))
val_writer = SummaryWriter(os.path.join(
config.run_abs_path, 'summary', 'validation'))
start_load_datasets = now()
# create and load datasets
if config.dataset_type_train.startswith('HemibrainDataset'):
_log.info('Preparing training dataset ...')
train_dataset = globals()[config.dataset_type_train](
root=config.dataset_abs_path_train,
config=config,
db_name=config.db_name_train,
embeddings_collection=config.embeddings_collection_train,
roi_offset=config.train_roi_offset,
roi_shape=config.train_roi_shape,
length=config.samples,
save_processed=config.save_processed_train
)
_log.info('Preparing validation dataset ...')
validation_dataset = globals()[config.dataset_type_val](
root=config.dataset_abs_path_val,
config=config,
db_name=config.db_name_val,
embeddings_collection=config.embeddings_collection_val,
roi_offset=config.val_roi_offset,
roi_shape=config.val_roi_shape,
save_processed=config.save_processed_val
)
if config.final_test_pass:
_log.info('Preparing test dataset ...')
test_dataset = globals()[config.dataset_type_test](
root=config.dataset_abs_path_test,
config=config,
db_name=config.db_name_test,
embeddings_collection=config.embeddings_collection_test,
roi_offset=config.test_roi_offset,
roi_shape=config.test_roi_shape,
save_processed=config.save_processed_test
)
else:
dataset = globals()[config.dataset_type_train](
root=config.dataset_abs_path_train, config=config)
# split into train and test
split_train_idx = int(
config.samples * (1 - config.test_split - config.validation_split))
split_validation_idx = int(config.samples * (1 - config.test_split))
train_dataset = dataset[:split_train_idx]
validation_dataset = dataset[split_train_idx:split_validation_idx]
test_dataset = dataset[split_validation_idx:]
# new feature: if model is loaded, use the same train val test split.
# shuffle can return the permutation of the dataset, which can then be used to permute the same way
# dataset, perm = dataset.shuffle(return_perm=True)
# when loading a model:
# dataset = dataset.__indexing__(permutation)
train_dataset.update_config(config)
assert train_dataset.__getitem__(0).edge_attr.size(
1) == config.pseudo_dimensionality
if config.standardize_targets and config.model_type == 'RegressionProblem':
config.targets_mean, config.targets_std = train_dataset.targets_mean_std()
_log.info(f'Datasets ready in {now() - start_load_datasets} s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
_log.debug(f'num of gpus available: {torch.cuda.device_count()}')
if torch.cuda.is_available():
_log.info(f'current device: {torch.cuda.current_device()}')
else:
_log.info(f'current device: cpu')
data_sampler_train = torch.utils.data.RandomSampler(
data_source=train_dataset,
replacement=True,
num_samples=config.epoch_samples_train
)
data_sampler_val = torch.utils.data.RandomSampler(
data_source=validation_dataset,
replacement=True,
num_samples=config.epoch_samples_val
)
data_loader_train = DataLoader(
train_dataset,
batch_size=config.batch_size_train,
shuffle=False,
sampler=data_sampler_train,
num_workers=config.num_workers,
pin_memory=config.dataloader_pin_memory,
worker_init_fn=lambda idx: np.random.seed()
)
data_loader_validation = DataLoader(
validation_dataset,
batch_size=config.batch_size_eval,
shuffle=False,
sampler=data_sampler_val,
num_workers=config.num_workers,
worker_init_fn=lambda idx: np.random.seed()
)
start_load_model = now()
if not config.load_model:
model = globals()[config.model](
config=config,
train_writer=train_writer,
val_writer=val_writer,
model_type=config.model_type
)
model = model.to(device)
else:
_log.info('Loading model {} ...'.format(config.load_model))
# find latest state of model
_log.info(f'root dir {config.root_dir}')
_log.info(f'run_abs_path {config.run_abs_path}')
_log.info(f'model_dir {config.model_dir}')
load_model_dir = os.path.join(
config.root_dir, config.run_abs_path, config.model_dir)
checkpoint_versions = [name for name in os.listdir(
load_model_dir) if name.endswith('.tar')]
if config.load_model_version == 'latest':
if 'final.tar' in checkpoint_versions:
checkpoint_to_load = 'final.tar'
else:
checkpoint_versions = sorted([
x for x in checkpoint_versions if x.startswith('epoch')])
checkpoint_to_load = checkpoint_versions[-1]
else:
checkpoint_to_load = f'{config.load_model_version}.tar'
_log.info('Loading checkpoint {} ...'.format(
os.path.join(load_model_dir, checkpoint_to_load)))
checkpoint = torch.load(os.path.join(
load_model_dir, checkpoint_to_load))
# restore the checkpoint
model = globals()[config.model](
config=config,
train_writer=train_writer,
val_writer=val_writer,
epoch=checkpoint['epoch'],
train_batch_iteration=checkpoint['train_batch_iteration'],
val_batch_iteration=checkpoint['val_batch_iteration'],
model_type=config.model_type
)
# model.to(device) has to be executed before loading the state
# dicts
model.to(device)
model.load_state_dict(checkpoint['model_state_dict'])
model.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
total_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
_log.info(f'nr params: {total_params}')
_run.log_scalar('nr_params', total_params, config.training_epochs)
_log.info(f'Model ready in {now() - start_load_model} s')
utils.log_max_memory_allocated(device)
# save config to file and store in DB
config_filepath = os.path.join(config.run_abs_path, 'config.json')
with open(config_filepath, 'w') as f:
json.dump(vars(config), f)
_run.add_artifact(filename=config_filepath)
def atexit_tasks(model):
# -----------------------------------------------
# ---------------- EVALUATION ROUTINE -----------
# -----------------------------------------------
# _log.info('saving tensorboardx summary files ...')
# # save the tensorboardx summary files
# summary_dir_exit = os.path.join(
# config.run_abs_path, config.summary_dir)
# summary_compressed = summary_dir_exit + '.tar.gz'
# # remove old tar file
# if os.path.isfile(summary_compressed):
# os.remove(summary_compressed)
#
# with tarfile.open(summary_compressed, mode='w:gz') as archive:
# archive.add(summary_dir_exit, arcname='summary', recursive=True)
# # _run.add_artifact(filename=summary_compressed, name='summary.tar.gz')
model.eval()
model.current_writer = None
# final print routine
train_dataset.print_summary()
_log.info(
f'Total number of parameters: {total_params}')
if config.final_training_pass:
# TODO seems to be buggy at the moment
# train loss
final_loss_train = 0.0
final_metric_train = 0.0
final_nr_nodes_train = 0
_log.info('final training pass ...')
start = time.time()
for data_ft in data_loader_train:
data_ft = data_ft.to(device)
out_ft = model(data_ft)
final_loss_train += model.loss(out_ft,
data_ft.y,
data_ft.mask).item() * data_ft.mask.sum().item()
final_metric_train += model.out_to_metric(
out_ft, data_ft.y, data_ft.mask) * data_ft.mask.sum().item()
final_nr_nodes_train += data_ft.mask.sum().item()
utils.log_max_memory_allocated(device)
final_loss_train /= final_nr_nodes_train
final_metric_train /= final_nr_nodes_train
_run.log_scalar(
'loss_train_final',
final_loss_train,
config.training_epochs)
_run.log_scalar(
'accuracy_train_final',
final_metric_train,
config.training_epochs)
_log.info(f'final training pass in {time.time() - start:.3f}s')
else:
# report training loss of last epoch
try:
final_loss_train = epoch_loss
final_metric_train = epoch_metric_train
except NameError as e:
_log.warning(e)
final_loss_train = 0.0
final_metric_train = 0.0
_log.info(
f'Mean train loss ({train_dataset.__len__()} samples): {final_loss_train:.3f}')
_log.info(
f'Mean accuracy on train set: {final_metric_train:.3f}')
if config.final_test_pass:
# test loss
data_loader_test = DataLoader(
test_dataset,
batch_size=config.batch_size_eval,
shuffle=False,
num_workers=config.num_workers,
worker_init_fn=lambda idx: np.random.seed()
)
test_loss = 0.0
test_metric = 0.0
edge_weights_test = 0
test_predictions = []
test_targets = []
test_1d_outputs = dict()
test_embeddings = dict()
_log.info('test pass ...')
start_test_pass = time.time()
for i, data_fe in enumerate(data_loader_test):
_log.info(
f'batch {i}: num nodes {data_fe.num_nodes}, num edges {data_fe.num_edges}')
data_fe = data_fe.to(device)
out_fe = model(data_fe)
utils.log_max_memory_allocated(device)
if config.our_conv_output_node_embeddings:
nodes_mask = data_fe.nodes_mask.cpu().numpy().astype(np.bool)
_log.info(
f'adding embeddings for {np.sum(nodes_mask)} nodes')
embeddings = out_fe.cpu().numpy()[nodes_mask]
ids = data_fe.node_ids.cpu().numpy()[nodes_mask]
for k, v in zip(ids, embeddings):
if k not in test_embeddings:
test_embeddings[k] = v
else:
_log.warning(
f'embedding for node {k} already exists')
continue
if config.write_to_db:
start = time.time()
out_1d = model.out_to_one_dim(out_fe)
# TODO this assumes again that every pairs of directed edges are next to each other
# and we grab the original representation (u,v) from the DB? Does not seem to work
edges = torch.transpose(data_fe.edge_index, 0, 1)[0::2]
# mask outputs
edges = edges[data_fe.roi_mask.byte()].cpu(
).numpy().astype(np.int64)
out_1d = out_1d[data_fe.roi_mask.byte()].cpu().numpy()
if len(edges) == 0:
_log.warning(
f'test pass: no edges in block after masking')
continue
edges_orig_labels = np.zeros_like(edges, dtype=np.int64)
edges_orig_labels = replace_values(
in_array=edges,
out_array=edges_orig_labels,
old_values=np.arange(
data_fe.num_nodes, dtype=np.int64),
new_values=data_fe.node_ids.cpu().numpy().astype(np.int64),
inplace=False
)
edges_list = [tuple(i)
for i in edges_orig_labels]
for k, v in zip(edges_list, out_1d):
# TODO this is super hacky, only applies for RAG
# remove artificial self-loops:
if k[0] == k[1]:
continue
if k not in test_1d_outputs:
test_1d_outputs[k] = v
else:
# TODO adapt strategy here if desired
if config.graph_type == 'HemibrainGraphMasked':
test_1d_outputs[k] = max(test_1d_outputs[k], v)
_log.warning(
'Masking should lead to a single prediction per edge in blockwise dataset, unless a block is doubled because another one is empty')
_log.warning(
f'Edge {k} with value {test_1d_outputs[k]} already exists, new value would be {v}')
else:
test_1d_outputs[k] = max(test_1d_outputs[k], v)
_log.debug(
f'writing outputs to dict in {time.time() - start}s')
test_loss += model.loss(out_fe, data_fe.y,
data_fe.mask).item() * data_fe.mask.sum().item()
test_metric += model.out_to_metric(out_fe,
data_fe.y, data_fe.mask) * data_fe.mask.sum().item()
edge_weights_test += data_fe.mask.sum().item()
pred = model.out_to_predictions(out_fe)
test_predictions.extend(model.predictions_to_list(pred))
test_targets.extend(data_fe.y.tolist())
if config.our_conv_output_node_embeddings:
# save embeddings to file
emb_path = osp.join(config.run_abs_path, 'embeddings.npz')
_log.info(f'save embeddings to {emb_path}')
np.savez(
emb_path,
node_ids=np.array(
list(test_embeddings.keys()), dtype=np.int64),
embeddings=np.array(
list(test_embeddings.values()), dtype=np.float32)
)
return
test_loss /= edge_weights_test
test_metric /= edge_weights_test
_run.log_scalar('loss_test', test_loss, config.training_epochs)
_run.log_scalar('accuracy_test', test_metric,
config.training_epochs)
_log.info(f'test pass in {time.time() - start_test_pass:.3f}s\n')
_log.info(
f'Mean test loss ({test_dataset.__len__()} samples): {test_loss:.3f}')
_log.info(
f'Mean accuracy on test set: {test_metric:.3f}\n')
if config.write_to_db:
comment = _run.meta_info['options']['--comment']
timestamp = str(_run.start_time).replace(' ', 'T')
test_dataset.write_outputs_to_db(
outputs_dict=test_1d_outputs,
collection_name=f'{timestamp}_{comment}',
)
if config.plot_targets_vs_predictions:
# TODO fix to run on cluster
# plot targets vs predictions. default is a confusion matrix
model.plot_targets_vs_predictions(
targets=test_targets, predictions=test_predictions)
_run.add_artifact(
filename=os.path.join(
config.run_abs_path,
config.confusion_matrix_path),
name=config.confusion_matrix_path)
# if Regression, plot targets vs. continuous outputs
# if isinstance(model.model_type, RegressionProblem):
# test_outputs = []
# for data in data_loader_test:
# data = data.to(device)
# out = torch.squeeze(model(data)).tolist()
# test_outputs.extend(out)
# model.model_type.plot_targets_vs_outputs(
# targets=test_targets, outputs=test_outputs)
# plot the graphs in the test dataset for visual inspection
if config.plot_graphs_testset:
if config.plot_graphs_testset < 0 or config.plot_graphs_testset > test_dataset.__len__():
plot_limit = test_dataset.__len__()
else:
plot_limit = config.plot_graphs_testset
for i in range(plot_limit):
g = test_dataset[i]
g.to(device)
out_p = model(g)
g.plot_predictions(
config=config,
pred=model.predictions_to_list(
model.out_to_predictions(out_p)),
graph_nr=i,
run=_run,
acc=model.out_to_metric(
out_p,
g.y, g.mask),
logger=_log)
else:
try:
# report validation loss of last epoch
test_loss = validation_loss
test_metric = epoch_metric_val
except NameError as e:
_log.warning(e)
test_loss = 0.0
test_metric = 0.0
_log.info(
f'Mean validation loss ({validation_dataset.__len__()} samples): {test_loss:.3f}')
_log.info(
f'Mean accuracy on validation set: {test_metric:.3f}\n')
return '\n{0}\ntrain acc: {1:.3f}\ntest acc: {2:.3f}'.format(
_run.meta_info['options']['--comment'], final_metric_train, test_metric)
atexit.register(atexit_tasks, model=model)
# -----------------------------------------------
# ---------------- TRAINING LOOP ----------------
# -----------------------------------------------
# no training if we simply want to produce node embeddings
if config.our_conv_output_node_embeddings:
atexit.unregister(atexit_tasks)
return atexit_tasks(model=model)
for epoch in range(model.epoch, config.training_epochs):
start_epoch_train = time.time()
# put model in training mode (e.g. use dropout)
model.train()
epoch_loss = 0.0
epoch_metric_train = 0.0
edge_weights_train = 0
_log.info('epoch {} ...'.format(epoch))
for batch_i, data in enumerate(data_loader_train):
start_batch = now()
# mask is half as long as num edges, because it is not directed
_log.info(
f'batch {batch_i}: num nodes {data.num_nodes},'
f'num edges in loss/total {int(2 * data.mask.sum().item())}/{data.num_edges}'
)
data = data.to(device)
# call the forward method
_log.debug('forward pass')
out = model(data)
loss = model.loss(out, data.y, data.mask)
_log.debug('backward pass')
loss.backward()
# Gradient clipping
if config.clip_grad:
if config.clip_method == 'value':
torch.nn.utils.clip_grad_value_(
parameters=filter(
lambda p: p.requires_grad, model.parameters()),
clip_value=config.clip_value
)
else:
torch.nn.utils.clip_grad_norm_(
parameters=filter(
lambda p: p.requires_grad, model.parameters()),
max_norm=config.clip_value,
norm_type=float(config.clip_method)
)
model.optimizer.step()
# clear the gradient variables of the model
model.optimizer.zero_grad()
utils.log_max_memory_allocated(device)
model.print_current_loss(epoch, batch_i, _log)
epoch_loss += loss.item() * data.mask.sum().item()
epoch_metric_train += model.out_to_metric(
out, data.y, data.mask) * data.mask.sum().item()
edge_weights_train += data.mask.sum().item()
if batch_i % config.outputs_interval == 0:
if isinstance(out, tuple):
# first dim: u,v second dim: num_edges, third dim = number of output node features
# store pairs of node embeddings
out = torch.stack([out[0], out[1]], dim=0)
np.savez(
os.path.join(outputs_dir, 'train',
f'epoch_{epoch}_batch_{batch_i}'),
out=out.detach().cpu().numpy(),
labels=data.y.detach().cpu().numpy(),
mask=data.mask.detach().cpu().numpy()
)
if config.summary_per_batch:
train_writer.add_scalar(
'00/weighted_loss',
loss.item(),
epoch * data_loader_train.__len__() + batch_i
)
train_writer.add_scalar(
'00/weighted_accuracy',
model.out_to_metric(out, data.y, data.mask),
epoch * data_loader_train.__len__() + batch_i
)
model.train_batch_iteration += 1
_log.debug(f'batch {batch_i} in {now() - start_batch} s')
epoch_loss /= edge_weights_train
epoch_metric_train /= edge_weights_train
if config.write_summary:
train_writer.add_scalar('_per_epoch/loss', epoch_loss, epoch)
train_writer.add_scalar(
'_per_epoch/metric', epoch_metric_train, epoch)
_run.log_scalar('loss_train', epoch_loss, epoch)
_run.log_scalar('accuracy_train', epoch_metric_train, epoch)
_log.info(f'training in {time.time() - start_epoch_train:.3f} s')
start_epoch_val = time.time()
# validation
model.eval()
validation_loss = 0.0
epoch_metric_val = 0.0
edge_weights_val = 0
for batch_i, data in enumerate(data_loader_validation):
data = data.to(device)
out = model(data)
loss = model.loss(out, data.y, data.mask)
utils.log_max_memory_allocated(device)
# model.print_current_loss(
# epoch, 'validation {}'.format(batch_i), _log)
validation_loss += loss.item() * data.mask.sum().item()
epoch_metric_val += model.out_to_metric(
out, data.y, data.mask) * data.mask.sum().item()
edge_weights_val += data.mask.sum().item()
if batch_i % config.outputs_interval == 0:
if isinstance(out, tuple):
# first dim: u,v second dim: num_edges, third dim = number of output node features
# store pairs of node embeddings
out = torch.stack([out[0], out[1]], dim=0)
np.savez(
os.path.join(outputs_dir, 'val',
f'epoch_{epoch}_batch_{batch_i}'),
out=out.detach().cpu().numpy(),
labels=data.y.detach().cpu().numpy(),
mask=data.mask.detach().cpu().numpy()
)
if config.summary_per_batch:
val_writer.add_scalar(
'00/weighted_loss',
loss.item(),
epoch * data_loader_train.__len__() + batch_i
)
val_writer.add_scalar(
'00/weighted_accuracy',
model.out_to_metric(out, data.y, data.mask),
epoch * data_loader_train.__len__() + batch_i
)
# for cosine embedding loss
if isinstance(out, tuple):
utils.output_similarities_split(
writer=val_writer,
iteration=epoch * data_loader_train.__len__() + batch_i,
out0=out[0],
out1=out[1],
labels=data.y
)
model.val_batch_iteration += 1
# The numbering of train and val does not correspond 1-to-1!
# Here we skip some numbers for maintaining loose correspondence
model.val_batch_iteration = model.train_batch_iteration
validation_loss /= edge_weights_val
epoch_metric_val /= edge_weights_val
if config.write_summary:
val_writer.add_scalar('_per_epoch/loss', validation_loss, epoch)
val_writer.add_scalar('_per_epoch/metric', epoch_metric_val, epoch)
_run.log_scalar('loss_val', validation_loss, epoch)
_run.log_scalar('accuracy_val', epoch_metric_val, epoch)
_run.result = f'train acc: {epoch_metric_train:.3f}, val acc: {epoch_metric_val:.3f}'
model.epoch += 1
_log.info(f'validation in {time.time() - start_epoch_val:.3f} s')
# save intermediate models
if model.epoch % config.checkpoint_interval == 0:
_log.info('saving model ...')
model.save('epoch_{}'.format(model.epoch))
# save the final model
final_model_name = 'final'
model.save(final_model_name)
_run.add_artifact(
filename=os.path.join(
config.run_abs_path,
config.model_dir,
final_model_name + '.tar'),
name=final_model_name)
###########################
# After training loop is over, the exit function is called directly
atexit.unregister(atexit_tasks)
return atexit_tasks(model=model)
if __name__ == '__main__':
config_dict, remaining_args = Config().parse_args()
ex.add_config(config_dict)
# sacred_default_flags = ['--enforce_clean', '-l', 'INFO']
sacred_default_flags = []
# remove all argparse arguments from sys.argv
argv = [sys.argv[0], *sacred_default_flags, *remaining_args]
ex.observers.append(
MongoObserver.create(
url=config_dict['mongo_url'],
db_name=config_dict['mongo_db']
)
)
if config_dict['telegram']:
telegram_obs = TelegramObserver.from_config(
os.path.join(config_dict['root_dir'], 'telegram.json'))
ex.observers.append(telegram_obs)
ex.captured_out_filter = sacred.utils.apply_backspaces_and_linefeeds
r = ex.run_commandline(argv)