forked from ibab/tensorflow-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
313 lines (269 loc) · 11.3 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import json
import os
import librosa
import numpy as np
import tensorflow as tf
from wavenet import WaveNetModel, mu_law_decode, mu_law_encode, audio_reader, dictionary_cardinality, text_to_ints
SAMPLES = 16000
TEMPERATURE = 1.0
LOGDIR = './logdir'
WAVENET_PARAMS = './wavenet_params.json'
SAVE_EVERY = None
SILENCE_THRESHOLD = 0.1
def get_arguments():
def _str_to_bool(s):
"""Convert string to bool (in argparse context)."""
if s.lower() not in ['true', 'false']:
raise ValueError('Argument needs to be a '
'boolean, got {}'.format(s))
return {'true': True, 'false': False}[s.lower()]
def _ensure_positive_float(f):
"""Ensure argument is a positive float."""
if float(f) < 0:
raise argparse.ArgumentTypeError(
'Argument must be greater than zero')
return float(f)
parser = argparse.ArgumentParser(description='WaveNet generation script')
parser.add_argument(
'checkpoint', type=str, help='Which model checkpoint to generate from')
parser.add_argument(
'--samples',
type=int,
default=SAMPLES,
help='How many waveform samples to generate')
parser.add_argument(
'--temperature',
type=_ensure_positive_float,
default=TEMPERATURE,
help='Sampling temperature')
parser.add_argument(
'--logdir',
type=str,
default=LOGDIR,
help='Directory in which to store the logging '
'information for TensorBoard.')
parser.add_argument(
'--wavenet_params',
type=str,
default=WAVENET_PARAMS,
help='JSON file with the network parameters')
parser.add_argument(
'--wav_out_path',
type=str,
default=None,
help='Path to output wav file')
parser.add_argument(
'--save_every',
type=int,
default=SAVE_EVERY,
help='How many samples before saving in-progress wav')
parser.add_argument(
'--fast_generation',
type=_str_to_bool,
default=True,
help='Use fast generation')
parser.add_argument(
'--wav_seed',
type=str,
default=None,
help='The wav file to start generation from')
parser.add_argument(
'--gc_channels',
type=int,
default=None,
help='Number of global condition embedding channels. Omit if no '
'global conditioning.')
parser.add_argument(
'--gc_cardinality',
type=int,
default=None,
help='Number of categories upon which we globally condition.')
parser.add_argument(
'--gc_id',
type=int,
default=None,
help='ID of category to generate, if globally conditioned.')
parser.add_argument(
'--lc_channels',
type=int,
default=None,
help='Number of local condition embedding channels. Omit if no '
'local conditioning.')
parser.add_argument(
'--lc_text',
type=str,
default=None,
help='The text to use for local conditioning.')
arguments = parser.parse_args()
if arguments.gc_channels is not None:
if arguments.gc_cardinality is None:
raise ValueError("Globally conditioning but gc_cardinality not "
"specified. Use --gc_cardinality=377 for full "
"VCTK corpus.")
if arguments.gc_id is None:
raise ValueError("Globally conditioning, but global condition was "
"not specified. Use --gc_id to specify global "
"condition.")
if arguments.lc_channels is not None:
if arguments.lc_text is None:
raise ValueError("Locally conditioning but lc_text not specified.")
return arguments
def write_wav(waveform, sample_rate, filename):
y = np.array(waveform)
librosa.output.write_wav(filename, y, sample_rate)
print('Updated wav file at {}'.format(filename))
def create_seed(filename,
sample_rate,
quantization_channels,
window_size,
silence_threshold=SILENCE_THRESHOLD):
audio, _ = librosa.load(filename, sr=sample_rate, mono=True)
audio = audio_reader.trim_silence(audio, silence_threshold)
quantized = mu_law_encode(audio, quantization_channels)
cut_index = tf.cond(tf.size(quantized) < tf.constant(window_size),
lambda: tf.size(quantized),
lambda: tf.constant(window_size))
return quantized[:cut_index]
def main():
args = get_arguments()
started_datestring = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())
logdir = os.path.join(args.logdir, 'generate', started_datestring)
with open(args.wavenet_params, 'r') as config_file:
wavenet_params = json.load(config_file)
lc_enabled = args.lc_channels is not None
dilations_lc = []
if lc_enabled:
dilations_lc = wavenet_params["dilations_lc"]
sess = tf.Session()
net = WaveNetModel(
batch_size=1,
dilations=wavenet_params['dilations'],
dilations_lc=dilations_lc,
filter_width=wavenet_params['filter_width'],
residual_channels=wavenet_params['residual_channels'],
dilation_channels=wavenet_params['dilation_channels'],
quantization_channels=wavenet_params['quantization_channels'],
skip_channels=wavenet_params['skip_channels'],
use_biases=wavenet_params['use_biases'],
scalar_input=wavenet_params['scalar_input'],
initial_filter_width=wavenet_params['initial_filter_width'],
global_condition_channels=args.gc_channels,
global_condition_cardinality=args.gc_cardinality,
local_condition_cardinality=dictionary_cardinality(),
local_condition_channels=args.lc_channels,
local_condition_gaussians=wavenet_params["lc_gaussians"])
samples = tf.placeholder(tf.int32)
if args.fast_generation:
next_sample, weights = net.predict_proba_incremental(samples, args.gc_id, text_to_ints(args.lc_text))
else:
next_sample = net.predict_proba(samples, args.gc_id)
if args.fast_generation:
sess.run(tf.initialize_all_variables())
sess.run(net.init_ops)
variables_to_restore = {
var.name[:-2]: var for var in tf.all_variables()
if not ('state_buffer' in var.name or 'pointer' in var.name)}
saver = tf.train.Saver(variables_to_restore)
print('Restoring model from {}'.format(args.checkpoint))
saver.restore(sess, args.checkpoint)
decode = mu_law_decode(samples, wavenet_params['quantization_channels'])
quantization_channels = wavenet_params['quantization_channels']
if args.wav_seed:
seed = create_seed(args.wav_seed,
wavenet_params['sample_rate'],
quantization_channels,
net.receptive_field)
waveform = sess.run(seed).tolist()
else:
# Silence with a single random sample at the end.
waveform = [quantization_channels / 2] * (net.receptive_field - 1)
waveform.append(np.random.randint(quantization_channels))
if args.fast_generation and args.wav_seed:
# When using the incremental generation, we need to
# feed in all priming samples one by one before starting the
# actual generation.
# TODO This could be done much more efficiently by passing the waveform
# to the incremental generator as an optional argument, which would be
# used to fill the queues initially.
outputs = [next_sample]
outputs.extend(net.push_ops)
print('Priming generation...')
for i, x in enumerate(waveform[-net.receptive_field: -1]):
if i % 100 == 0:
print('Priming sample {}'.format(i))
sess.run(outputs, feed_dict={samples: x})
print('Done.')
last_sample_timestamp = datetime.now()
generated_weights = []
for step in range(args.samples):
if args.fast_generation:
outputs = [next_sample, weights]
outputs.extend(net.push_ops)
window = waveform[-1]
else:
if len(waveform) > net.receptive_field:
window = waveform[-net.receptive_field:]
else:
window = waveform
outputs = [next_sample]
# Run the WaveNet to predict the next sample.
outs = sess.run(outputs, feed_dict={samples: window})
prediction = outs[0]
if args.fast_generation and lc_enabled:
char_weights = outs[1]
generated_weights.append(char_weights)
if char_weights[-1] > char_weights[-2]:
# stopping when the 'end of sentence' weight dominates
print('Stopping at sample {:3<d}'.format(step), end='\r')
break
# Scale prediction distribution using temperature.
np.seterr(divide='ignore')
scaled_prediction = np.log(prediction) / args.temperature
scaled_prediction = (scaled_prediction -
np.logaddexp.reduce(scaled_prediction))
scaled_prediction = np.exp(scaled_prediction)
np.seterr(divide='warn')
# Prediction distribution at temperature=1.0 should be unchanged after
# scaling.
if args.temperature == 1.0:
np.testing.assert_allclose(
prediction, scaled_prediction, atol=1e-5,
err_msg='Prediction scaling at temperature=1.0 '
'is not working as intended.')
sample = np.random.choice(
np.arange(quantization_channels), p=scaled_prediction)
waveform.append(sample)
# Show progress only once per second.
current_sample_timestamp = datetime.now()
time_since_print = current_sample_timestamp - last_sample_timestamp
if time_since_print.total_seconds() > 1.:
print('Sample {:3<d}/{:3<d}'.format(step + 1, args.samples),
end='\r')
last_sample_timestamp = current_sample_timestamp
# If we have partial writing, save the result so far.
if (args.wav_out_path and args.save_every and
(step + 1) % args.save_every == 0):
out = sess.run(decode, feed_dict={samples: waveform})
write_wav(out, wavenet_params['sample_rate'], args.wav_out_path)
# Introduce a newline to clear the carriage return from the progress.
print()
np.savetxt('char_weights.out', generated_weights, delimiter=',')
# Save the result as an audio summary.
datestring = str(datetime.now()).replace(' ', 'T')
writer = tf.train.SummaryWriter(logdir)
tf.audio_summary('generated', decode, wavenet_params['sample_rate'])
summaries = tf.merge_all_summaries()
summary_out = sess.run(summaries,
feed_dict={samples: np.reshape(waveform, [-1, 1])})
writer.add_summary(summary_out)
# Save the result as a wav file.
if args.wav_out_path:
out = sess.run(decode, feed_dict={samples: waveform})
write_wav(out, wavenet_params['sample_rate'], args.wav_out_path)
print('Finished generating. The result can be viewed in TensorBoard.')
if __name__ == '__main__':
main()