-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvonmises.py
60 lines (45 loc) · 1.51 KB
/
vonmises.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
from matplotlib import pyplot as plt
def vonmises_KDE(data, kappa, length, plot=None):
"""
Create a kernal densisity estimate of circular data using the von mises
distribution as the basis function.
"""
# imports
from scipy.stats import vonmises
from scipy.interpolate import interp1d
# convert to radians
data = np.radians(data)
# set limits for von mises
vonmises.a = -np.pi
vonmises.b = np.pi
x_data = np.linspace(-2*np.pi, 2*np.pi, length, endpoint=False)
kernels = []
for d in data:
# Make the basis function as a von mises PDF
kernel = vonmises(kappa, loc=d)
kernel = kernel.pdf(x_data)
kernels.append(kernel)
if plot:
# For plotting
kernel /= kernel.max()
kernel *= .2
plt.plot(x_data, kernel, "grey", alpha=.5)
vonmises_kde = np.sum(kernels, axis=0)
vonmises_kde = vonmises_kde / np.trapz(vonmises_kde, x=x_data)
f = interp1d( x_data, vonmises_kde )
if plot:
plt.plot(x_data, vonmises_kde, c='red')
return x_data, vonmises_kde, f
baz = np.array([179,100,-170])
kappa = 12
x_data, vonmises_kde, f = vonmises_KDE(baz, kappa, 200, plot=0)
f = open('prd_vm.dat','w')
for i in range(0,200):
xc = (i-100.0)*np.pi/50.0
if xc < 0:
f.write(str(xc)+' '+str(vonmises_kde[i]+vonmises_kde[i+100]) + '\n')
else:
f.write(str(xc)+' '+str(vonmises_kde[i]+vonmises_kde[i-100]) + '\n')
f.close()
plt.show()