Skip to content

Latest commit

 

History

History
91 lines (75 loc) · 1.84 KB

README.md

File metadata and controls

91 lines (75 loc) · 1.84 KB

Convolutional Recurrent Neural Network

This software implements OCR system using CNN + RNN + CTCLoss, inspired by CRNN network.

Usage

python ./train.py --help

Demo

  1. Train simple OCR using TestDataset data generator. Training for ~60-100 epochs.
python train.py --test-init True --test-epoch 10 --output-dir <path_to_folder_with_snapshots>
  1. Run test for trained model with visualization mode.
python test.py --snapshot <path_to_folder_with_snapshots>/crnn_resnet18_10_best --visualize True

Train on custom dataset

  1. Create dataset
  • Structure of dataset:
<root_dataset_dir>
---- data
-------- <img_filename_0>
...
-------- <img_filename_1>
---- desc.json
  • Structure of desc.json:
{
"abc": <symbols_in_aphabet>,
"train": [
{
"text": <text_on_image>
"name": <img_filename>
},
...
{
"text": <text_on_image>
"name": <img_filename>
}
],
"test": [
{
"text": <text_on_image>
"name": <img_filename>
},
...
{
"text": <text_on_image>
"name": <img_filename>
}
]
}
  1. Train simple OCR using custom dataset.
python train.pt --test-init True --test-epoch 10 --output-dir <path_to_folder_with_snapshots> --data-path <path_to_custom_dataset>
  1. Run test for trained model with visualization mode.
python test.py --snapshot <path_to_folder_with_snapshots>/crnn_resnet18_10_best --visualize True --data-path <path_to_custom_dataset>

Dependence

Articles