-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfmnist_cgan.py
268 lines (225 loc) · 13.1 KB
/
fmnist_cgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
np.set_printoptions(threshold=np.nan)
import tensorflow as tf
from tensorflow.keras.datasets.fashion_mnist import load_data
from tensorflow.keras.datasets.fashion_mnist import load_data as load_mnist
from src.architecture import dcgan_discriminator_mnist, dcgan_generator_mnist
from src.architecture import tikhonov_regularizer
from src import argparser
from src.utilities import write_to_file, log_tf_files
from src.utilities import PlotGenSamples
def noise(m,n):
return np.random.normal(loc=0.0, scale=1., size=[m,n])
def generate(checkpoint, noise_size, size=(6,6)):
latest_checkpoint = tf.train.latest_checkpoint(checkpoint)
saver = tf.train.import_meta_graph(latest_checkpoint + '.meta')
G_output = tf.get_default_graph().get_tensor_by_name('G/generator_output:0')
gen_data_ph = tf.get_default_graph().get_tensor_by_name('G/gen_data_ph:0')
dropout_prob_ph = tf.get_default_graph().get_tensor_by_name('dropout_prob_ph:0')
batch_size_ph = tf.get_default_graph().get_tensor_by_name('batch_size_ph:0')
with tf.Session() as sess:
saver.restore(sess, latest_checkpoint)
gen_samples = sess.run(G_output, feed_dict={gen_data_ph: noise(size[0]*size[1],noise_size),
dropout_prob_ph: 0.,
batch_size_ph: size[0]*size[1]})
plot_mnist(gen_samples, 'generate')
def predict(checkpoint, noise_size, n_predictions=10):
latest_checkpoint = tf.train.latest_checkpoint(checkpoint)
saver = tf.train.import_meta_graph(latest_checkpoint + '.meta')
D_logit = tf.get_default_graph().get_tensor_by_name('D/discriminator_logit:0')
data_ph = tf.get_default_graph().get_tensor_by_name('D/data_ph:0')
dropout_prob_ph = tf.get_default_graph().get_tensor_by_name('dropout_prob_ph:0')
batch_size_ph = tf.get_default_graph().get_tensor_by_name('batch_size_ph:0')
(train_data, train_labels), _ = load_mnist()
train_data = train_data[:n_predictions]
train_data = train_data / 255.
(real_train_data, real_train_labels), _ = load_data()
real_train_data = real_train_data[:n_predictions]
real_train_data = real_train_data / 255.
with tf.Session() as sess:
saver.restore(sess, latest_checkpoint)
predictions = sess.run(D_logit, feed_dict={data_ph: train_data,
dropout_prob_ph: 0.,
batch_size_ph: 1})
real_predictions = sess.run(D_logit, feed_dict={data_ph: real_train_data,
dropout_prob_ph: 0.,
batch_size_ph: 1})
print()
print("##Fake samples predictions##")
for i,pred in enumerate(predictions):
print('Prediction {}: {}'.format(i, pred[0]))
print()
print("##Real samples predictions##")
for i,pred in enumerate(real_predictions):
print('Prediction {}: {}'.format(i, pred[0]))
def train(nepochs, batch_size, noise_size, checkpoint):
training_dataset, nbatches = train_data(batch_size)
iterator = training_dataset.make_initializable_iterator()
next_element = iterator.get_next()
dropout_prob_ph = tf.placeholder_with_default(0.0, shape=(), name='dropout_prob_ph')
dropout_prob_D = 0.7
dropout_prob_G = 0.3
#placeholder for the conditional information (MNIST labels)
cond_D_ph = tf.placeholder(tf.float32, shape=[None, 1], name='cond_D_ph')
cond_G_ph = tf.placeholder(tf.float32, shape=[None, 1], name='cond_G_ph')
with tf.variable_scope('G'):
gen_data_ph = tf.placeholder(tf.float32, shape=[None, noise_size], name='gen_data_ph')
G_sample = dcgan_generator_mnist(gen_data_ph, y=cond_G_ph, prob=dropout_prob_ph)
with tf.variable_scope('D') as scope:
data_ph = tf.placeholder(tf.float32, shape=[None, 28, 28], name='data_ph')
D_real_logits, D_real, _ = dcgan_discriminator_mnist(data_ph, y=cond_D_ph, prob=dropout_prob_ph)
with tf.variable_scope('D', reuse=True):
D_fake_logits, D_fake, _ = dcgan_discriminator_mnist(G_sample, y=cond_G_ph, prob=dropout_prob_ph)
flip_prob = 0.333 #label flipping
flip_arr = np.random.binomial(n=1, p=flip_prob, size=(nepochs, nbatches))
minval = .85 #smoothing
batch_size_ph = tf.placeholder(tf.int32, shape=[], name='batch_size_ph')
real_labels_ph = tf.placeholder(tf.float32, name='real_labels_ph')
fake_labels_ph = tf.placeholder(tf.float32, name='fake_labels_ph')
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits
D_loss_real = cross_entropy(logits=D_real_logits, labels=real_labels_ph)
D_loss_fake = cross_entropy(logits=D_fake_logits, labels=fake_labels_ph)
gamma_ph = tf.placeholder(tf.float32, shape=[], name='gamma_ph')
D_loss_reg = tikhonov_regularizer(D_real_logits, data_ph, D_fake_logits, gen_data_ph, batch_size_ph)
D_loss = tf.reduce_mean(D_loss_real + D_loss_fake) #+ (gamma_ph/2.)*D_loss_reg
G_loss = tf.reduce_mean(cross_entropy(logits=D_fake_logits, labels=real_labels_ph))
tf.summary.scalar('D_loss', D_loss)
tf.summary.scalar('G_loss', G_loss)
log_tf_files(num_layers=3, loss=G_loss, player='G')
log_tf_files(num_layers=3, loss=D_loss, player='D')
D_optimizer = tf.train.AdamOptimizer(0.0002, beta1=0.5)
G_optimizer = tf.train.AdamOptimizer(0.0002, beta1=0.5)
D_trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'D')
G_trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'G')
D_train_op = D_optimizer.minimize(D_loss, var_list=D_trainable_vars, name='D_train_op')
G_train_op = G_optimizer.minimize(G_loss, var_list=G_trainable_vars, name='G_train_op')
#accuracy
pred_classes_real = tf.round(D_real)
labels_real = tf.ones_like(real_labels_ph, dtype=tf.float32)
pred_classes_fake = tf.round(D_fake)
labels_fake = tf.zeros_like(fake_labels_ph, dtype=tf.float32)
pred_classes_tot = tf.concat([tf.round(D_real),tf.round(D_fake)], axis=0)
labels_tot = tf.concat([labels_real, labels_fake], axis=0)
with tf.name_scope('acc'):
with tf.name_scope('acc_tot'):
D_acc_tot, D_acc_tot_op = tf.metrics.accuracy(labels=labels_real,
predictions=pred_classes_real)
with tf.name_scope('acc_real'):
D_acc_real, D_acc_real_op = tf.metrics.accuracy(labels=labels_fake,
predictions=pred_classes_fake)
with tf.name_scope('acc_fake'):
D_acc_fake, D_acc_fake_op = tf.metrics.accuracy(labels=labels_tot,
predictions=pred_classes_tot)
tf.summary.scalar('D_accuracy_real', D_acc_real)
tf.summary.scalar('D_accuracy_fake', D_acc_fake)
tf.summary.scalar('D_accuracy_tot', D_acc_tot)
summary = tf.summary.merge_all()
vars_train_reset = [v for v in tf.global_variables() if 'acc/' in v.name]
plot = PlotGenSamples()
saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1)
with tf.Session() as sess:
init = tf.group(tf.local_variables_initializer(), tf.global_variables_initializer())
sess.run(init)
train_writer = tf.summary.FileWriter('tensorboard/'+str(np.random.randint(0,99999)),
sess.graph)
for epoch in range(nepochs):
print("Epoch: {}".format(epoch), flush=True)
sess.run(iterator.initializer)
#very slow: keep outside inner loop!
#con: the accuracy between batches will be wrong
sess.run(tf.variables_initializer(vars_train_reset))
#tikhonov regularizer simulated annealing
gamma = 2. * np.power(0.01, epoch/nepochs)
for batch in range(nbatches):
inputs, labels = sess.run(next_element)
labels = np.expand_dims(labels, axis=1)
#label flipping
if flip_arr[epoch][batch] == 1:
real = np.zeros(shape=(len(inputs),1))
fake = np.full(shape=(len(inputs),1),
fill_value=np.random.uniform(low=minval, high=1.))
else:
real = np.full(shape=(len(inputs),1),
fill_value=np.random.uniform(low=minval, high=1.))
fake = np.zeros(shape=(len(inputs),1))
#conditional information for the generator
random_labels = np.random.randint(low=0, high=9, size=[len(inputs),1])
random_labels = np.true_divide(random_labels, 9)
#train discriminator
noise_D = noise(len(inputs),noise_size)
_, D_loss_c, D_real_c, D_fake_c = sess.run([D_train_op, D_loss, D_real, D_fake],
feed_dict={data_ph: inputs, gen_data_ph: noise_D,
cond_D_ph: labels, cond_G_ph: random_labels,
dropout_prob_ph: dropout_prob_D,
batch_size_ph: len(inputs),
real_labels_ph: real, fake_labels_ph: fake,
gamma_ph: gamma})
#train generator
noise_G = noise(len(inputs),noise_size)
_, G_loss_c = sess.run([G_train_op, G_loss],
feed_dict={data_ph: inputs, gen_data_ph: noise_G,
cond_D_ph: labels, cond_G_ph: random_labels,
dropout_prob_ph: dropout_prob_G,
batch_size_ph: len(inputs),
real_labels_ph: real, fake_labels_ph: fake,
gamma_ph: gamma})
D_acc_real_c, D_acc_fake_c, D_acc_tot_c = sess.run([D_acc_real, D_acc_fake, D_acc_tot],
feed_dict={data_ph: inputs, gen_data_ph: noise_G,
cond_D_ph: labels, cond_G_ph: random_labels,
dropout_prob_ph: dropout_prob_G,
batch_size_ph: len(inputs),
real_labels_ph: real, fake_labels_ph: fake,
gamma_ph: gamma})
write_to_file('metrics_mnist_gan.txt', [epoch*nbatches+(batch+1)],
[G_loss_c], [D_loss_c], [np.mean(D_real_c)], [np.mean(D_fake_c)])
summ = sess.run(summary,
feed_dict={data_ph: inputs, gen_data_ph: noise_G,
cond_D_ph: labels, cond_G_ph: random_labels,
dropout_prob_ph: dropout_prob_G,
batch_size_ph: len(inputs),
real_labels_ph: real, fake_labels_ph: fake,
gamma_ph: gamma})
train_writer.add_summary(summ, epoch*nbatches+(batch+1))
#save meta graph for later used
saver.save(sess, checkpoint)
#print generated samples
sample = sess.run(G_sample, feed_dict={gen_data_ph: noise_G,
cond_G_ph: random_labels,
dropout_prob_ph: dropout_prob_G,
batch_size_ph: batch_size,
real_labels_ph: real, fake_labels_ph: fake,
gamma_ph: gamma})
plot.plot_mnist(sample[:36], 'fmnist_cgan_gen'+str(epoch))
plot.plot_mnist(inputs[:36], 'fmnist_cgan_data'+str(epoch))
def main(argv=None):
nepochs = 3000
batch_size = 128
noise_size = 100
checkpoint = '/fred/oz012/Bruno/checkpoints/'+str(FLAGS.checkpoint)+'/'
if FLAGS.mode == 'train':
train(nepochs, batch_size, noise_size, checkpoint)
elif FLAGS.mode == 'predict':
predict(checkpoint, noise_size)
elif FLAGS.mode == 'generate':
generate(checkpoint, noise_size)
else:
raise ValueError('The specified mode is not valid.')
def train_data(batch_size):
(train_data, train_labels), _ = load_data()
train_data = train_data / 255.
train_labels = train_labels / 9.
dataset_size = len(train_data)
nbatches = int(np.ceil(dataset_size/batch_size))
dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
return dataset.shuffle(buffer_size=dataset_size).repeat(1).batch(batch_size), nbatches
if __name__ == '__main__':
parser = argparse.ArgumentParser()
FLAGS, _ = argparser.add_args(parser)
tf.logging.set_verbosity(tf.logging.DEBUG)
tf.app.run()