-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathglow_flow.py
187 lines (173 loc) · 7.89 KB
/
glow_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import tensorflow as tf
import tensorflow_probability as tfp
import numpy as np
from normalizing_flows.flows import Flow, Transform
from normalizing_flows.flows.affine import BatchNorm
from . import (
InvertibleConv,
ActNorm,
Squeeze,
Split,
AffineCoupling,
Parameterize,
Gaussianize,
coupling_nn_glow
)
def glow_step(layer_index, coupling_nn_ctor=coupling_nn_glow(), act_norm=True, name='glow_step'):
norm = ActNorm(name=f'{name}_act_norm') if act_norm else BatchNorm(name=f'{name}_batch_norm')
invertible_conv = InvertibleConv(name=f'{name}_inv_conv')
affine_coupling = AffineCoupling(layer_index, nn_ctor=coupling_nn_ctor, name=f'{name}_affine_coupling')
flow_steps = [norm, invertible_conv, affine_coupling]
return Flow(flow_steps)
def glow_layer(layer_index,
parameterize: Parameterize,
depth=4,
coupling_nn_ctor=coupling_nn_glow(),
split_axis=-1,
act_norm=True,
name='glow_layer'):
squeeze = Squeeze(name=f'{name}_squeeze')
steps = Flow.uniform(depth, lambda i: glow_step(layer_index,
coupling_nn_ctor=coupling_nn_ctor,
act_norm=act_norm,
name=f'{name}_step{i}'))
layer_steps = [squeeze, steps]
if split_axis is not None:
layer_steps.append(Split(parameterize, split_axis=split_axis, name=f'{name}_split'))
return Flow(layer_steps)
class GlowFlow(Transform):
"""
Glow normalizing flow (Kingma et al, 2018).
Note that all Glow ops define forward as x -> z (data to encoding)
rather than the canonical interpretation of z -> x. Conversely,
inverse is defined as z -> x (encoding to data). The implementations
provided by this module are written to be consistent with the
terminology as defined by the Glow authors. Note that this is inconsistent
with the 'flows' module in general, which specifies 'forward' as z -> x
and vice versa. This can be corrected easily using the flows.Invert transform.
"""
def __init__(self,
input_shape=None,
num_layers=1,
depth=4,
cond_shape=None,
parameterize_ctor=Gaussianize,
coupling_nn_ctor=coupling_nn_glow(),
act_norm=True,
name='glow_flow',
*args, **kwargs):
"""
Creates a new Glow normalizing flow with the given configuration.
input_shape : shape of input; can be provided here or at a later time to 'initialize'
num_layers : number of "layers" in the multi-scale Glow architecture
depth_per_layer : number of glow steps per layer
parameterize_ctor : a function () -> Paramterize (see consructor docs for Split)
coupling_nn_ctor : function that constructs a Keras model for affine coupling steps
act_norm : if true, use act norm in Glow layers; otherwise, use batch norm
"""
def _layer(i):
"""Builds layer i; omits split op for final layer"""
assert i < num_layers, f'expected i < {num_layers}; got {i}'
return glow_layer(i,
parameterize_ctor(name=f'{name}_layer{i}_param'),
depth=depth,
coupling_nn_ctor=coupling_nn_ctor,
act_norm=act_norm,
split_axis=None if i == num_layers - 1 else -1,
name=f'{name}_layer{i}')
super().__init__(*args, name=name, **kwargs)
self.num_layers = num_layers
self.depth = depth
self.cond_shape = cond_shape
self.layers = [_layer(i) for i in range(num_layers)]
self.parameterize = parameterize_ctor()
if input_shape is not None:
self.initialize(input_shape)
def _build_cond_fn(self, cond_shape, z_shape):
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Conv2D, Concatenate
x_in = Input(z_shape[1:])
cond_in = Input(cond_shape)
y = Dense(tf.math.reduce_prod(z_shape[1:]), name=f'{self.name}_cond_dense')(Flatten()(cond_in))
y = Reshape(z_shape[1:])(y)
y = Concatenate(axis=-1)([x_in, y])
y = Conv2D(z_shape[-1], 3, padding='same')(y)
return Model(inputs=[x_in, cond_in], outputs=y)
def _forward_shape(self, input_shape):
for layer in self.layers:
input_shape = layer._forward_shape(input_shape)
return input_shape
def _inverse_shape(self, input_shape):
for layer in reversed(self.layers):
input_shape = layer._inverse_shape(input_shape)
return input_shape
def _initialize(self, input_shape):
for layer in self.layers:
layer.initialize(input_shape)
input_shape = layer._forward_shape(input_shape)
self.parameterize.initialize(input_shape)
if self.cond_shape is not None:
self.cond_fn = self._build_cond_fn(self.cond_shape, input_shape)
def _flatten_zs(self, zs):
zs_reshaped = []
for z in zs:
zs_reshaped.append(tf.reshape(z, (tf.shape(z)[0], -1)))
return tf.concat(zs_reshaped, axis=-1)
def _unflatten_z(self, z):
assert self.input_shape is not None
batch_size = tf.shape(z)[0]
output_shape = self._forward_shape(self.input_shape)
st = np.prod(output_shape[1:])
z_k = tf.reshape(z[:,-st:], (batch_size, *output_shape[1:]))
zs = [z_k]
for i in range(self.num_layers-1):
layer_i = self.layers[self.num_layers-i-1]
output_shape = layer_i._inverse_shape(output_shape)
size_i = np.prod(output_shape[1:])
z_i = z[:,-st-size_i:-st]
zs.insert(0, tf.reshape(z_i, (batch_size, *output_shape[1:])))
st += size_i
return zs
def _forward(self, x, return_zs=False, **kwargs):
assert self.cond_shape is None or 'y_cond' in kwargs, 'y_cond must be supplied for conditional flow'
zs = []
x_i = x
fldj = 0.0
for i in range(self.num_layers-1):
layer = self.layers[i]
(x_i, z_i), fldj_i = layer.forward(x_i)
fldj += fldj_i
zs.append(z_i)
# final layer
x_i, fldj_i = self.layers[-1].forward(x_i)
fldj += fldj_i
# Gaussianize (parameterize) final x_i
h = tf.zeros_like(x_i)
if self.cond_shape is not None:
h = self.cond_fn([h, kwargs['y_cond']])
z_i, fldj_i = self.parameterize.forward(h, x_i)
fldj += fldj_i
zs.append(z_i)
if return_zs:
return zs, fldj
z = self._flatten_zs(zs)
return tf.reshape(z, tf.shape(x)), fldj
def _inverse(self, z, input_zs=False, **kwargs):
assert self.cond_shape is None or 'y_cond' in kwargs, 'y_cond must be supplied for conditional flow'
zs = z if input_zs else self._unflatten_z(tf.reshape(z, (tf.shape(z)[0], -1)))
assert len(zs) == self.num_layers, 'number of latent space inputs should match number of layers'
h = tf.zeros_like(zs[-1])
if self.cond_shape is not None:
h = self.cond_fn([h, kwargs['y_cond']])
ildj = 0.0
x_i, ildj_i = self.parameterize.inverse(h, zs[-1])
ildj += ildj_i
x_i, ildj_i = self.layers[-1].inverse(x_i)
ildj += ildj_i
for i in range(self.num_layers-1):
layer = self.layers[self.num_layers-i-2]
x_i, ildj_i = layer.inverse(x_i, zs[-i-2])
ildj += ildj_i
return x_i, ildj
def _regularization_loss(self):
return tf.math.add_n([layer._regularization_loss() for layer in self.layers])