-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
123 lines (90 loc) · 2.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import json
from nltk_utils import tokenize, stem, bag_of_words
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from model import NeuralNet
with open('intents.json', 'r') as f:
intents = json.load(f)
print(intents)
words_all= []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
words_all.extend(w) #we use extend instead of append because we dont want to put array in an array.
xy.append((w, tag))
ignore_words = ['?', '!', '.', ',']
words_all = [stem(w) for w in words_all if w not in ignore_words] #list comprehension
words_all = sorted(set(words_all))
tags = sorted(set(tags))
#print(words_all)
#print(tags)
#Creating the training data
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
bag = bag_of_words(pattern_sentence, words_all)
X_train.append(bag)
label = tags.index(tag) #with the indexing we will have numbers for labels
y_train.append(label) #CrossEntropyLoss
X_train = np.array(X_train)
y_train = np.array(y_train)
print(X_train)
print(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
# support indexing such that dataset[i] can be used to get i-th sample
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.n_samples
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(X_train[0])
#print(input_size, len(words_all))
#print(output_size, tags)
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size = batch_size, shuffle = True, num_workers = 0)
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
model = NeuralNet(input_size, hidden_size, output_size).to(device)
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
# if y would be one-hot, we must apply
# labels = torch.max(labels, 1)[1]
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
print(f'final loss, loss={loss.item():.4f}')
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"words_all": words_all,
"tags":tags
}
FILE = "data2.pth"
torch.save(data, FILE)
print (f'training complete. File saved to {FILE}')