-
Notifications
You must be signed in to change notification settings - Fork 267
/
Copy pathutp_hash.cpp
246 lines (213 loc) · 7.02 KB
/
utp_hash.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
* Copyright (c) 2010-2013 BitTorrent, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "utp_hash.h"
#include "utp_types.h"
#define LIBUTP_HASH_UNUSED ((utp_link_t)-1)
#ifdef STRICT_ALIGN
inline uint32 Read32(const void *p)
{
uint32 tmp;
memcpy(&tmp, p, sizeof tmp);
return tmp;
}
#else
inline uint32 Read32(const void *p) { return *(uint32*)p; }
#endif
// Get the amount of memory required for the hash parameters and the bucket set
// Waste a space for an unused bucket in order to ensure the following managed memory have 32-bit aligned addresses
// TODO: make this 64-bit clean
#define BASE_SIZE(bc) (sizeof(utp_hash_t) + sizeof(utp_link_t) * ((bc) + 1))
// Get a pointer to the base of the structure array managed by the hash table
#define get_bep(h) ((byte*)(h)) + BASE_SIZE((h)->N)
// Get the address of the information associated with a specific structure in the array,
// given the address of the base of the structure.
// This assumes a utp_link_t link member is at the end of the structure.
// Given compilers filling out the memory to a 32-bit clean value, this may mean that
// the location named in the structure may not be the location actually used by the hash table,
// since the compiler may have padded the end of the structure with 2 bytes after the utp_link_t member.
// TODO: this macro should not require that the variable pointing at the hash table be named 'hash'
#define ptr_to_link(p) (utp_link_t *) (((byte *) (p)) + hash->E - sizeof(utp_link_t))
// Calculate how much to allocate for a hash table with bucket count, total size, and structure count
// TODO: make this 64-bit clean
#define ALLOCATION_SIZE(bc, ts, sc) (BASE_SIZE((bc)) + (ts) * (sc))
utp_hash_t *utp_hash_create(int N, int key_size, int total_size, int initial, utp_hash_compute_t hashfun, utp_hash_equal_t compfun)
{
// Must have odd number of hash buckets (prime number is best)
assert(N % 2);
// Ensure structures will be at aligned memory addresses
// TODO: make this 64-bit clean
assert(0 == (total_size % 4));
int size = ALLOCATION_SIZE(N, total_size, initial);
utp_hash_t *hash = (utp_hash_t *) malloc( size );
memset( hash, 0, size );
for (int i = 0; i < N + 1; ++i)
hash->inits[i] = LIBUTP_HASH_UNUSED;
hash->N = N;
hash->K = key_size;
hash->E = total_size;
hash->hash_compute = hashfun;
hash->hash_equal = compfun;
hash->allocated = initial;
hash->count = 0;
hash->used = 0;
hash->free = LIBUTP_HASH_UNUSED;
return hash;
}
uint utp_hash_mem(const void *keyp, size_t keysize)
{
uint hash = 0;
uint n = keysize;
while (n >= 4) {
hash ^= Read32(keyp);
keyp = (byte*)keyp + sizeof(uint32);
hash = (hash << 13) | (hash >> 19);
n -= 4;
}
while (n != 0) {
hash ^= *(byte*)keyp;
keyp = (byte*)keyp + sizeof(byte);
hash = (hash << 8) | (hash >> 24);
n--;
}
return hash;
}
uint utp_hash_mkidx(utp_hash_t *hash, const void *keyp)
{
// Generate a key from the hash
return hash->hash_compute(keyp, hash->K) % hash->N;
}
static inline bool compare(byte *a, byte *b,int n)
{
assert(n >= 4);
if (Read32(a) != Read32(b)) return false;
return memcmp(a+4, b+4, n-4) == 0;
}
#define COMPARE(h,k1,k2,ks) (((h)->hash_equal) ? (h)->hash_equal((void*)k1,(void*)k2,ks) : compare(k1,k2,ks))
// Look-up a key in the hash table.
// Returns NULL if not found
void *utp_hash_lookup(utp_hash_t *hash, const void *key)
{
utp_link_t idx = utp_hash_mkidx(hash, key);
// base pointer
byte *bep = get_bep(hash);
utp_link_t cur = hash->inits[idx];
while (cur != LIBUTP_HASH_UNUSED) {
byte *key2 = bep + (cur * hash->E);
if (COMPARE(hash, (byte*)key, key2, hash->K))
return key2;
cur = *ptr_to_link(key2);
}
return NULL;
}
// Add a new element to the hash table.
// Returns a pointer to the new element.
// This assumes the element is not already present!
void *utp_hash_add(utp_hash_t **hashp, const void *key)
{
//Allocate a new entry
byte *elemp;
utp_link_t elem;
utp_hash_t *hash = *hashp;
utp_link_t idx = utp_hash_mkidx(hash, key);
if ((elem=hash->free) == LIBUTP_HASH_UNUSED) {
utp_link_t all = hash->allocated;
if (hash->used == all) {
utp_hash_t *nhash;
if (all <= (LIBUTP_HASH_UNUSED/2)) {
all *= 2;
} else if (all != LIBUTP_HASH_UNUSED) {
all = LIBUTP_HASH_UNUSED;
} else {
// too many items! can't grow!
assert(0);
return NULL;
}
// otherwise need to allocate.
nhash = (utp_hash_t*)realloc(hash, ALLOCATION_SIZE(hash->N, hash->E, all));
if (!nhash) {
// out of memory (or too big to allocate)
assert(nhash);
return NULL;
}
hash = *hashp = nhash;
hash->allocated = all;
}
elem = hash->used++;
elemp = get_bep(hash) + elem * hash->E;
} else {
elemp = get_bep(hash) + elem * hash->E;
hash->free = *ptr_to_link(elemp);
}
*ptr_to_link(elemp) = hash->inits[idx];
hash->inits[idx] = elem;
hash->count++;
// copy key into it
memcpy(elemp, key, hash->K);
return elemp;
}
// Delete an element from the utp_hash_t
// Returns a pointer to the already deleted element.
void *utp_hash_del(utp_hash_t *hash, const void *key)
{
utp_link_t idx = utp_hash_mkidx(hash, key);
// base pointer
byte *bep = get_bep(hash);
utp_link_t *curp = &hash->inits[idx];
utp_link_t cur;
while ((cur=*curp) != LIBUTP_HASH_UNUSED) {
byte *key2 = bep + (cur * hash->E);
if (COMPARE(hash,(byte*)key,(byte*)key2, hash->K )) {
// found an item that matched. unlink it
*curp = *ptr_to_link(key2);
// Insert into freelist
*ptr_to_link(key2) = hash->free;
hash->free = cur;
hash->count--;
return key2;
}
curp = ptr_to_link(key2);
}
return NULL;
}
void *utp_hash_iterate(utp_hash_t *hash, utp_hash_iterator_t *iter)
{
utp_link_t elem;
if ((elem=iter->elem) == LIBUTP_HASH_UNUSED) {
// Find a bucket with an element
utp_link_t buck = iter->bucket + 1;
for(;;) {
if (buck >= hash->N)
return NULL;
if ((elem = hash->inits[buck]) != LIBUTP_HASH_UNUSED)
break;
buck++;
}
iter->bucket = buck;
}
byte *elemp = get_bep(hash) + (elem * hash->E);
iter->elem = *ptr_to_link(elemp);
return elemp;
}
void utp_hash_free_mem(utp_hash_t* hash)
{
free(hash);
}