-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg.py
184 lines (142 loc) · 7.12 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import random
import dill
import copy
import torch
import torch.nn.functional as F
import torch.optim as optim
from collections import namedtuple, deque
from model import Actor, Critic
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.05):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
self.state = x + dx
return self.state
class ReplayBuffer:
def __init__(self, action_size, buffer_size, batch_size, seed):
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
def save(self, fileName):
with open(fileName, 'wb') as file:
dill.dump(self.memory, file)
def load(self, fileName):
with open(fileName, 'rb') as file:
self.memory = dill.load(file)
class DDPG():
def __init__(self, state_size, action_size, random_seed=23,
fc1_units=96, fc2_units=96, epsilon=1.0, lr_actor=1e-3,
lr_critic=1e-3, weight_decay=0):
self.state_size = state_size
self.action_size = action_size
self.random_seed = random_seed
self.fc1_units = fc1_units
self.fc2_units = fc2_units
self.state_size = state_size
self.action_size = action_size
self.epsilon = epsilon
self.lr_actor = lr_actor
self.lr_critic = lr_critic
self.weight_decay = weight_decay
self.noise = OUNoise(action_size, random_seed)
random.seed(random_seed)
self.recreate()
def recreate(self):
self.actor = Actor(self.state_size, self.action_size, self.random_seed,
fc1_units=self.fc1_units, fc2_units=self.fc2_units).to(device)
self.actor_target = Actor(self.state_size, self.action_size, self.random_seed,
fc1_units=self.fc1_units, fc2_units=self.fc2_units).to(device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.lr_actor)
self.critic = Critic(self.state_size, self.action_size, self.random_seed,
fc1_units=self.fc1_units, fc2_units=self.fc2_units).to(device)
self.critic_target = Critic(self.state_size, self.action_size, self.random_seed,
fc1_units=self.fc1_units, fc2_units=self.fc2_units).to(device)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.lr_critic,
weight_decay=self.weight_decay)
self.hard_copy(self.actor_target, self.actor)
self.hard_copy(self.critic_target, self.critic)
def act(self, state, add_noise=True):
state = torch.from_numpy(state).float().to(device)
self.actor.eval()
with torch.no_grad():
action = self.actor(state).cpu().data.numpy()
self.actor.train()
if add_noise:
action += self.epsilon * self.noise.sample()
return action
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma, tau=1e-3, epsilon_decay=1e-6):
states, actions, rewards, next_states, dones = experiences
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
Q_expected = self.critic(states, actions)
# Critic update
critic_loss = F.mse_loss(Q_expected, Q_targets)
self.critic_optimizer.zero_grad()
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.critic.parameters(), 1)
self.critic_optimizer.step()
# Actor update
actions_pred = self.actor(states)
actor_loss = -self.critic(states, actions_pred).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Targets update
self.soft_update(self.critic, self.critic_target, tau)
self.soft_update(self.actor, self.actor_target, tau)
# Noise update
self.epsilon -= epsilon_decay
self.noise.reset()
def soft_update(self, local_model, target_model, tau):
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
def hard_copy(self, target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
def save(self, path):
torch.save(self.actor.state_dict(),
path+ str(self.fc1_units)+'_'+str(self.fc2_units) + '_actor.pth')
torch.save(self.critic.state_dict(),
path+ str(self.fc1_units)+'_'+str(self.fc2_units) + '_critic.pth')
def load(self, actor_file, critic_file):
self.actor.load_state_dict(torch.load(actor_file))
self.critic.load_state_dict(torch.load(critic_file))
self.hard_copy(self.actor_target, self.actor)
self.hard_copy(self.critic_target, self.critic)