-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
303 lines (243 loc) · 9.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# python native
import os
import json
import random
import datetime
from functools import partial
# external library
import cv2
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from sklearn.model_selection import GroupKFold
import albumentations as A
import yaml
import wandb
# torch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import models
import segmentation_models_pytorch as smp
from model import create_model
# visualization
import matplotlib.pyplot as plt
from dataloader import XRayDataset
from psuedo_label import *
from loss import create_criterion
from optimizer import create_optim
from scheduler import create_sched
from augmentation import create_augmentation
CLASSES = [
'finger-1', 'finger-2', 'finger-3', 'finger-4', 'finger-5',
'finger-6', 'finger-7', 'finger-8', 'finger-9', 'finger-10',
'finger-11', 'finger-12', 'finger-13', 'finger-14', 'finger-15',
'finger-16', 'finger-17', 'finger-18', 'finger-19', 'Trapezium',
'Trapezoid', 'Capitate', 'Hamate', 'Scaphoid', 'Lunate',
'Triquetrum', 'Pisiform', 'Radius', 'Ulna',
]
CLASS2IND = {v: i for i, v in enumerate(CLASSES)}
IND2CLASS = {v: k for k, v in CLASS2IND.items()}
def dice_coef(y_true, y_pred):
y_true_f = y_true.flatten(2)
y_pred_f = y_pred.flatten(2)
intersection = torch.sum(y_true_f * y_pred_f, -1)
eps = 0.0001
return (2. * intersection + eps) / (torch.sum(y_true_f, -1) + torch.sum(y_pred_f, -1) + eps)
def save_model(model, file_name='model.pt'):
output_path = os.path.join(RESULT_DIR, file_name)
torch.save(model, output_path)
def set_seed():
torch.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed_all(RANDOM_SEED) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
def validation(epoch, model, data_loader, criterion, thr=0.5):
print(f'Start validation #{epoch:2d}')
set_seed()
model.eval()
dices = []
with torch.no_grad():
n_class = len(CLASSES)
total_loss = 0
cnt = 0
for step, (images, masks) in tqdm(enumerate(data_loader), total=len(data_loader)):
images, masks = images.cuda(), masks.cuda()
model = model.cuda()
outputs = model(images)
output_h, output_w = outputs.size(-2), outputs.size(-1)
mask_h, mask_w = masks.size(-2), masks.size(-1)
# gt와 prediction의 크기가 다른 경우 prediction을 gt에 맞춰 interpolation 합니다.
if output_h != mask_h or output_w != mask_w:
outputs = F.interpolate(outputs, size=(mask_h, mask_w), mode="bilinear")
loss = criterion(outputs, masks)
total_loss += loss
cnt += 1
outputs = torch.sigmoid(outputs)
outputs = (outputs > thr).detach().cpu()
masks = masks.detach().cpu()
dice = dice_coef(outputs, masks)
dices.append(dice)
# B C H W
if step == 0:
table_data = []
masks, preds = masks[0].numpy(), outputs[0].numpy()
for cls_idx in range(n_class):
empty_mask = np.zeros((2048, 2048))
mask = masks[cls_idx].astype(np.uint8) * 64
pred = preds[cls_idx].astype(np.uint8) * 128
empty_mask += mask
empty_mask += pred
table_data.append([IND2CLASS[cls_idx], wandb.Image(empty_mask)])
table_data.append(["original", wandb.Image(images[0].permute(1, 2, 0).cpu().numpy())])
wandb.log({f"val/{config['EXP_NAME']}": wandb.Table(columns=["cls_name", "img"], data=table_data)}, step=epoch)
dices = torch.cat(dices, 0)
dices_per_class = torch.mean(dices, 0)
dice_str = [
f"{c:<12}: {d.item():.4f}"
for c, d in zip(CLASSES, dices_per_class)
]
dice_str = "\n".join(dice_str)
print(dice_str)
avg_dice = torch.mean(dices_per_class).item()
wandb.log({"val/loss": total_loss / cnt, "val/dice": avg_dice}, step=epoch)
for c, d in zip(CLASSES, dices_per_class):
wandb.log({f"val-class/dice_{c}": d.item()}, step=epoch)
return avg_dice
def train(model, data_loader, val_loader, criterion, optimizer, scheduler, is_plateau):
print(f'Start training..')
set_seed()
n_class = len(CLASSES)
best_dice = 0.
scaler = torch.cuda.amp.GradScaler(enabled=True)
for epoch in range(NUM_EPOCHS):
model.train()
for step, (images, masks) in enumerate(data_loader):
# gpu 연산을 위해 device 할당합니다.
images, masks = images.cuda(), masks.cuda()
model = model.cuda()
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=True):
outputs = model(images)
# loss를 계산합니다.
loss = criterion(outputs, masks)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# step 주기에 따라 loss를 출력합니다.
if (step + 1) % 10 == 0:
print(
f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | '
f'Epoch [{epoch+1}/{NUM_EPOCHS}], '
f'Step [{step+1}/{len(train_loader)}], '
f'Loss: {round(loss.item(),4)}'
)
wandb.log({"train/loss": loss.item()}, step=epoch)
# validation 주기에 따라 loss를 출력하고 best model을 저장합니다.
if (epoch + 1) % VAL_EVERY == 0:
dice = validation(epoch + 1, model, val_loader, criterion)
if best_dice < dice:
print(f"Best performance at epoch: {epoch + 1}, {best_dice:.4f} -> {dice:.4f}")
print(f"Save model in {SAVED_DIR}")
best_dice = dice
save_model(model)
if scheduler:
if is_plateau:
if (epoch + 1) % VAL_EVERY == 0:
scheduler.step(dice)
else:
scheduler.step()
if __name__ == '__main__':
with open('config.yaml', 'r') as file:
config = yaml.safe_load(file)
DATA_ROOT = config['DATA_ROOT']
IMAGE_ROOT = f"{DATA_ROOT}/train/DCM"
LABEL_ROOT = f"{DATA_ROOT}/train/outputs_json"
SAVED_DIR = config['SAVED_DIR']
EXP_NAME = config['EXP_NAME']
RESULT_DIR = os.path.join(SAVED_DIR, EXP_NAME)
if not os.path.exists(RESULT_DIR):
os.makedirs(RESULT_DIR)
BATCH_SIZE = config['BATCH_SIZE']
LR = config['LR']
RANDOM_SEED = config['RANDOM_SEED']
NUM_EPOCHS = config['NUM_EPOCHS']
VAL_EVERY = config['VAL_EVERY']
PSUEDOLABEL_FLAG = config['PSEUDO_LABEL']
# model 정의
TYPE = config['TYPE']
MODEL = config['MODEL']
ENCODER = config['ENCODER']
RESIZE = config['RESIZE']
clear_test_data_in_train_path(DATA_ROOT)
if PSUEDOLABEL_FLAG:
preprocess(DATA_ROOT, config['OUTPUT_CSV_PATH'])
augmentation_config = config['augmentation']
augmentation_name = augmentation_config['name']
augmentation_params = augmentation_config['params'] or {}
train_tf = create_augmentation(augmentation_name, resize=RESIZE, **augmentation_params)
valid_tf = create_augmentation('base', resize=RESIZE)
train_dataset = XRayDataset(
IMAGE_ROOT,
LABEL_ROOT,
is_train=True,
transforms=train_tf,
psuedo_flag=PSUEDOLABEL_FLAG,
)
valid_dataset = XRayDataset(
IMAGE_ROOT,
LABEL_ROOT,
is_train=False,
transforms=valid_tf,
)
if PSUEDOLABEL_FLAG:
copy_test_data_to_train_path("data")
print(len(train_dataset), len(valid_dataset))
train_loader = DataLoader(
dataset=train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8,
drop_last=True,
)
# 주의: validation data는 이미지 크기가 크기 때문에 `num_wokers`는 커지면 메모리 에러가 발생할 수 있습니다.
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=2,
shuffle=False,
num_workers=0,
drop_last=False
)
# model을 정의
model = create_model(TYPE, MODEL, ENCODER, CLASSES)
# Loss function을 정의합니다.
loss_config = config['loss']
loss_name = loss_config['name']
loss_params = loss_config['params'] or {}
# Criterion을 정의합니다.
criterion = create_criterion(loss_name, **loss_params)
# Optimizer Config
optimizer_config = config['optimizer']
optimizer_name = optimizer_config['name']
optimizer_params = optimizer_config['params'] or {}
# Optimizer를 정의합니다.
optimizer = create_optim(optimizer_name, model, LR, **optimizer_params)
# Scheduler Config
scheduler_config = config['scheduler']
scheduler_name = scheduler_config['name']
scheduler_params = scheduler_config['params'] or {}
# Define Scheduler if available
scheduler = None
is_plateau = False
if scheduler_name != "":
scheduler, is_plateau = create_sched(scheduler_name, optimizer, NUM_EPOCHS, **scheduler_params)
# 시드를 설정합니다.
set_seed()
CAMPER_ID = config['CAMPER_ID']
wandb.init(project='Boost Camp Lv2-3',entity='frostings', name=f"{CAMPER_ID}-{EXP_NAME}", config=config)
train(model, train_loader, valid_loader, criterion, optimizer, scheduler, is_plateau)