forked from KaiyangZhou/CoOp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeat_extractor.py
189 lines (155 loc) · 5.94 KB
/
feat_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os, argparse
import numpy as np
import torch
import sys
sys.path.append(os.path.abspath(".."))
from datasets.oxford_pets import OxfordPets
from datasets.oxford_flowers import OxfordFlowers
from datasets.fgvc_aircraft import FGVCAircraft
from datasets.dtd import DescribableTextures
from datasets.eurosat import EuroSAT
from datasets.stanford_cars import StanfordCars
from datasets.food101 import Food101
from datasets.sun397 import SUN397
from datasets.caltech101 import Caltech101
from datasets.ucf101 import UCF101
from datasets.imagenet import ImageNet
from datasets.imagenetv2 import ImageNetV2
from datasets.imagenet_sketch import ImageNetSketch
from datasets.imagenet_a import ImageNetA
from datasets.imagenet_r import ImageNetR
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.data.transforms import build_transform
from dassl.data import DatasetWrapper
import clip
# import pdb; pdb.set_trace()
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def reset_cfg(cfg, args):
if args.root:
cfg.DATASET.ROOT = args.root
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
if args.trainer:
cfg.TRAINER.NAME = args.trainer
if args.backbone:
cfg.MODEL.BACKBONE.NAME = args.backbone
if args.head:
cfg.MODEL.HEAD.NAME = args.head
def extend_cfg(cfg):
"""
Add new config variables.
E.g.
from yacs.config import CfgNode as CN
cfg.TRAINER.MY_MODEL = CN()
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
cfg.TRAINER.MY_MODEL.PARAM_C = False
"""
from yacs.config import CfgNode as CN
cfg.TRAINER.OURS = CN()
cfg.TRAINER.OURS.N_CTX = 10 # number of context vectors
cfg.TRAINER.OURS.CSC = False # class-specific context
cfg.TRAINER.OURS.CTX_INIT = "" # initialize context vectors with given words
cfg.TRAINER.OURS.WEIGHT_U = 0.1 # weight for the unsupervised loss
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
if args.dataset_config_file:
cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
cfg.freeze()
return cfg
def main(args):
cfg = setup_cfg(args)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
######################################
# Setup DataLoader
######################################
dataset = eval(cfg.DATASET.NAME)(cfg)
if args.split == "train":
dataset_input = dataset.train_x
elif args.split == "val":
dataset_input = dataset.val
else:
dataset_input = dataset.test
tfm_train = build_transform(cfg, is_train=False)
data_loader = torch.utils.data.DataLoader(
DatasetWrapper(cfg, dataset_input, transform=tfm_train, is_train=False),
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE,
sampler=None,
shuffle=False,
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=False,
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA),
)
########################################
# Setup Network
########################################
clip_model, _ = clip.load("RN50", "cuda", jit=False)
clip_model.eval()
###################################################################################################################
# Start Feature Extractor
feature_list = []
label_list = []
train_dataiter = iter(data_loader)
for train_step in range(1, len(train_dataiter) + 1):
batch = next(train_dataiter)
data = batch["img"].cuda()
feature = clip_model.visual(data)
feature = feature.cpu()
for idx in range(len(data)):
feature_list.append(feature[idx].tolist())
label_list.extend(batch["label"].tolist())
save_dir = os.path.join(cfg.OUTPUT_DIR, cfg.DATASET.NAME)
os.makedirs(save_dir, exist_ok=True)
save_filename = f"{args.split}"
np.savez(
os.path.join(save_dir, save_filename),
feature_list=feature_list,
label_list=label_list,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument("--output-dir", type=str, default="", help="output directory")
parser.add_argument("--config-file", type=str, default="", help="path to config file")
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument("--num-shot", type=int, default=1, help="number of shots")
parser.add_argument("--split", type=str, choices=["train", "val", "test"], help="which split")
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
parser.add_argument("--head", type=str, default="", help="name of head")
parser.add_argument("--seed", type=int, default=-1, help="only positive value enables a fixed seed")
parser.add_argument("--eval-only", action="store_true", help="evaluation only")
args = parser.parse_args()
main(args)