-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_searchpool_eval.py
120 lines (99 loc) · 3.29 KB
/
run_searchpool_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
from kyn.networks import GraphConvInstanceGlobalMaxSmallSoftMaxAggrEdge
import torch
from kyn.eval import KYNEvaluator
import argparse
from pathlib import Path
from loguru import logger
import os
def main():
parser = argparse.ArgumentParser(
description="Evaluate model performance on similarity search tasks"
)
parser.add_argument(
"--model", type=str, required=True, help="Path to the model checkpoint file"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Path to the evaluation dataset (without -graphs.pickle or -labels.pickle suffix)",
)
parser.add_argument(
"--prefix",
type=str,
required=True,
help="Prefix for the experiment (e.g., binkit-normal, cisco-d2-test)",
)
parser.add_argument(
"--pools",
type=int,
default=500,
help="Number of search pools to evaluate (default: 500)",
)
parser.add_argument(
"--pool-sizes",
type=int,
nargs="+",
default=[100, 250, 1000, 10000],
help="List of pool sizes to evaluate (default: 100 250 1000 10000)",
)
parser.add_argument(
"--device",
type=str,
choices=["cuda", "cpu"],
default="cuda",
help="Device to run evaluation on (default: cuda)",
)
parser.add_argument(
"--seed",
type=int,
default=1337,
help="Random seed for reproducibility (default: 1337)",
)
args = parser.parse_args()
# Validate inputs
if not os.path.exists(args.model):
raise FileNotFoundError(f"Model file not found: {args.model}")
dataset_base = Path(args.dataset)
if not (
dataset_base.with_suffix(".pickle").exists()
or Path(str(dataset_base) + "-graphs.pickle").exists()
):
raise FileNotFoundError(
f"Dataset files not found: {dataset_base}-graphs.pickle or {dataset_base}-labels.pickle"
)
# Load model
logger.info(f"Loading model from {args.model}")
model = GraphConvInstanceGlobalMaxSmallSoftMaxAggrEdge(256, 6)
model_dict = torch.load(args.model)
model.load_state_dict(model_dict)
model.eval()
# Create evaluator instance
logger.info(
f"Initializing evaluator with {len(args.pool_sizes)} pool sizes: {args.pool_sizes}"
)
logger.info(f"Using {args.pools} search pools")
evaluator = KYNEvaluator(
model=model,
model_name=Path(args.model).stem,
dataset_path=str(dataset_base),
eval_prefix=args.prefix,
device=args.device,
search_pool_size=args.pool_sizes,
num_search_pools=args.pools,
random_seed=args.seed,
)
# Run evaluation
evaluator.evaluate()
# Results are automatically saved to files, but let's also print a summary
logger.info("\nEvaluation Summary:")
for pool_size, metrics in evaluator.metric_dicts:
logger.info(f"\nResults for pool size {pool_size}:")
for metric_name, value in metrics.items():
logger.info(f"{metric_name}: {value:.4f}")
def format_dataset_name(dataset_path: str) -> str:
"""Format dataset name for display purposes."""
return Path(dataset_path).stem.replace("-callers-edge-between", "")
if __name__ == "__main__":
main()