-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeomsurr.m
95 lines (82 loc) · 2.87 KB
/
geomsurr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
function [Wwp,Wsp,Wssp]=geomsurr(W,D,nmean,nstd)
% [Wwp,Wsp,Wssp]=geomsurr(W,D,[nmean],[nstd])
%
% Random graphs that preserve distance effect
%
% Inputs
% W = weighted connectivity matrix
% D = physical distance between nodes
% nmean = order to preserve mean
% nstd = order to preserve std
%
% Outputs
% Wwp = random surrogate preserving weights but not strengths
% Wsp = preserves strength distribution but not sequence
% Wssp = preserves strength sequence
%
% Note: Wsp and Wssp are generated assuming that W is undirected.
%
% Reference: Roberts et al. (2016) NeuroImage 124:379-393.
%
% M Breakspear, J Roberts
% QIMR Berghofer, 2015
if nargin<3, nmean=3; end
if nargin<4, nstd =2; end
%Check if directed
drct=1;
if max(max(W-W'))==0, drct=0; end
%Preliminaries
N = size(W,1);
Wwp = zeros(N,N);
W(1:N+1:end)=0; %Ensure there's no self connections
if drct==0, %Only do one triangle if undirected, then replicate
W = triu(W);
end
nz= find(W); %Nonzero entries
w = W(nz); %Vector of non-zero connections
d = D(nz); %Corresponding distances
logw = log(w); %log-weights
%1. remove mean to nmean order
pfit1=polyfit(d,logw,nmean);
mnlogw=logw-polyval(pfit1,d,nmean);
%2. adjust variance to nstd order
pfit2=polyfit(d,abs(mnlogw),nstd);
stdlogw=mnlogw./polyval(pfit2,d,nstd);
%3. Now create surrogate data, adjusted for mean and std
%Shuffle the old ones
shuff=randperm(length(stdlogw));
surr=stdlogw(shuff);
%4. Now put the geometry back in
%4.1 Invert
stdsurr=surr.*polyval(pfit2,d,nstd); % std
mnsurr=stdsurr+polyval(pfit1,d,nmean); % and mean
%4.2 Use surrogate weights as a scaffold to reorder the original weights,
% thus preserving the original set of weights but in the new distance-
% preserving random order (cf. the "amplitude adjustment" used in
% Fourier surrogates for time series analysis)
surrlogw=rankreorder(logw,mnsurr);
%4.3 Undo logarithm and put into weight-preserving surrogate matrix
Wwp(nz)=exp(surrlogw);
%Make undirected if W is undirected
if drct==0;
Wwp=(Wwp+Wwp');
W=W+W';
end
%5. Adjust node strengths - NOTE: assumes W is undirected
strengthsW=sum(W); % original node strengths
strengthsWwp=sum(Wwp); % new node strengths
%5.1 Re-order the old strengths to match new random order in Wwp
strengthsWsp=rankreorder(strengthsW,strengthsWwp);
%5.2 Adjust strengths to give both original and random strength sequences
Wsp=strengthcorrect(Wwp,strengthsWsp); % orig strengths in new sequence
Wssp=strengthcorrect(Wwp,strengthsW); % orig strengths in orig sequence
end
function out=rankreorder(x,scaffold)
% reorder vector x to have same rank order as vector scaffold
y(:,1)=scaffold;
y(:,2)=1:length(x);
y=sortrows(y,1);
y(:,1)=sort(x);
y=sortrows(y,2);
out=y(:,1);
end