-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
55 lines (51 loc) · 2.57 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from encoder import Encoder
from decoder import Decoder
from torch.nn.functional import log_softmax
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self,
src_number_of_words,
src_max_sequence_len,
target_number_of_words,
target_max_sequence_len,
model_dimension=512,
N_layers=6,
head_count=8,
):
super().__init__()
assert not model_dimension % head_count
self.model_dimension = model_dimension
self.N_layers = N_layers
self.head_count = head_count
# ensure that the model dimension and head_count are compatible when doing matrix transposes etc
# this is not an issue with the above config(model_dim%h ==0)
self.encoder_unit = Encoder(
num_of_words=src_number_of_words,
model_dimension=model_dimension,
max_seq_len=src_max_sequence_len,
head_count=head_count,
N=N_layers
)
self.decoder_unit = Decoder(
num_of_words=target_number_of_words,
model_dimension=model_dimension,
max_seq_len=target_max_sequence_len,
head_count=head_count,
N=N_layers
)
self.final_linear = nn.Linear(model_dimension, target_number_of_words)
def forward(self, source, source_mask, target, target_mask): # where source and target are the to encode/decode
encoder_out = self.encoder_unit(
input_seq=source,
source_mask=source_mask
)
decoder_out = self.decoder_unit(
target_seq=target,
target_mask=target_mask,
encoder_outputs=encoder_out,
source_mask=source_mask
)
linear_out = self.final_linear(decoder_out)
# possibly look into AdaptiveLogSoftmaxWithLoss pytorch?
soft_out = log_softmax(linear_out, dim=-1) # apply to rightmost dimension
return soft_out