-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathstep_by_step.m
351 lines (300 loc) · 10.5 KB
/
step_by_step.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
% Algorithms 11.6. , 11.7, 11.8
% Step-by-step euclidean reconstruction algorithm from multiple views
% as described in Chapter 11, "An introduction to 3-D Vision"
% by Y. Ma, S. Soatto, J. Kosecka, S. Sastry (MASKS)
% Code distributed free for non-commercial use
% Copyright (c) MASKS, 2003
%
% Last modified 5/5/2005
% Following shell loads tracked point features
% and corresponding frames and computes the motion and
% 3D structure of tracked features and focal lenght of the camera
% the skew and center of projection of the calibration matrix
% is assumed to be known
% 1. Given n features in m view
% 2. Compute fundamental matrix and projective reconstuction from 2 views
% 3. Use rank based factorization for multiview projective reconstruction
% 4. Solve for uknown focal lenght using absolute quadric constraints
% 5. Upgrade projective structure to euclidean one
% 6. Compute rectifying transformations
% 7. Warp the first and last view of the sequence
% ==================================================================
close all; clear;
% with the affine tracker and undone radial distortion
seq_name = 'oldhouse2/A2000';
image_type = 'bmp';
load oldhouse2/A2000_result_ST; % tracks from 110 to 200
% specify index of starting frame fs, end frame fe
% and the subsampling factor ft
fs = 0; fe = 88; ft = 12;
findex = [fs:ft:fe]; offset = 1;
indf = 1:size(findex,2);
% find features tracked in all the frames
ind = find(goodfeat ~= 0);
j = 0;
for i = (1+offset-1):ft:(fe-fs+1)
j = j+1;
xim(1,:,j) = xttfirst(2,ind) + SaveSTB(2,ind,i);
xim(2,:,j) = xttfirst(1,ind) + SaveSTB(1,ind,i);
xim(3,:,j) = 1;
end;
% consider only indf frames
xim = xim(:,:,indf);
[s, n, m] = size(xim);
opt = '%03d';
imfile = sprintf('%s%s.%s',seq_name,sprintf(opt,findex(1)),image_type)
seq(1).im = (imread(imfile));
% read images
for i = 2:m
if findex(1) < 10 opt = '%03d';
elseif findex(1) < 100 opt = '%02d';
else opt = '%01d';
end;
imfile = sprintf('%s%s.%s',seq_name,sprintf(opt,findex(i)),image_type)
seq(i).im = imread(imfile);
end;
[ydim,xdim,cdim] = size(seq(1).im);
for i = 1:m
imagesc(seq(i).im); colormap gray; hold on;
axis equal; axis image; axis off;
plot(xim(1,:,i), xim(2,:,i),'y.');
for k = 1:n
t = text(xim(1,k,i)+3, xim(2,k,i)+3,num2str(k));
set(t, 'Color', 'yellow');
end
end
disp('tracked features - press ENTER to continue');
pause
%-------------------------------------------------------------
% Structure and motion and focal length recovery given xim
% guess intrinsic parameter matrix
[s, n, m] = size(xim);
fguess = 700; % max(xdim,ydim);
Aguess = [fguess 0 xdim/2; 0 fguess ydim/2; 0 0 1];
%----------------------------
% Normalize the measurements
for i = 1:m
xn(:,:,i) = inv(Aguess)*xim(:,:,i); % partially calibrated views
end
%--------------------------------------------
% uncalibrated case - two view initialization
% compute F and decompose it
Rhat(:,:,1) = diag([1 1 1]);
That(:,1) = zeros(3,1);
F = dfundamental(xn(:,:,1), xn(:,:,m))
[uf, sf, vf] = svd(F'); ep = vf(:,3);
M = skew(ep)'*F; % + rand(3,1)*ep';
Rhat(:,:,m) = M;
That(:,m) = ep;
%----------------------------
% compute projective stucture
[X,lambda] = compute3DStructure(xn(:,:,1),xn(:,:,m),Rhat(:,:,m),That(:,m));
alpha = 1./lambda;
alpha = alpha/alpha(1);
%--------------------------------
% plot projective reconstruction
figure; hold on;
plot3(X(1,:,1),X(2,:,1),X(3,:,1),'k.');
xlabel('x'); ylabel('y'); zlabel('z');
draw_scale = X(3,1,1)/10;
Ts = That(:,1)*draw_scale;
plot3(Ts(1),Ts(2),Ts(3),'r.','MarkerSize',14);
Ts = That(:,m)*draw_scale;
plot3(Ts(1),Ts(2),Ts(3),'r.','MarkerSize',14);
title('Projective reconstruction from two views');
view(220,20); box on; grid off; axis equal;
negative_depth = (~isempty(find(lambda < 0)))
disp('end two view initialization - press ENTER');
pause;
%------------------------------------------------
% Compute initial motion estimates for all frames
init_error = 10; fs = [100]; ns = [];
errabs = init_error; err_prev = 500; iter = 1; errrel = init_error;
while (errabs > 1e-4) & (iter < 30) & (errrel > 1e-5) % (errlambda > 1e-4)
for k = 2:m
j = indf(k);
Q = []; % setup matrix P
for i = 1:n
Q = [Q; kron(skew(xn(:,i,j)),xn(:,i,1)') alpha(i)*skew(xn(:,i,j))];
end;
[um, sm, vm] = svd(Q);
That(:,j) = vm(10:12,12);
Rhat(:,:,j) = reshape(vm(1:9,12),3,3)';
end;
%--------------------------------------
% recompute alpha's based on all views
lambda_prev = lambda;
% recompute alpha's
for i = 1:n
M = []; % setup matrix M
for k = 2:m % set up Hl matrix for all m views
j = indf(k);
a = [ skew(xn(:,i,j))*That(:,j) skew(xn(:,i,j))*Rhat(:,:,j)*xn(:,i,1)];
M = [M; a];
end;
alpha(i) = -M(:,1)'*M(:,2)/norm(M(:,1))^2;
end;
scale = alpha(1);
alpha = alpha/scale; % set the global scale
lambda = 1./alpha;
X = [lambda.*xn(1,:,1); lambda.*xn(2,:,1); lambda.*xn(3,:,1); ones(1,n)];
res = [];
i = 1;
for l = 1:m
j = indf(l);
P(i*3-2:i*3,:) = [Rhat(:,:,j) scale*That(:,j)];
tt = P(i*3-2:i*3,:)*X;
if sum(sign(tt(3,:))) < -n/2
P(i*3-2:i*3,:) = -[Rhat(:,:,j) scale*That(:,j)];
Rhat(:,:,j) = -Rhat(:,:,j);
That(:,j) = -That(:,j);
tt = P(i*3-2:i*3,:)*X;
end;
xr(:,:,i) = Aguess*project(tt);
xd = xim(1:2,:,j) - xr(1:2,:,i);
errnorm = sqrt(xd(1,:).^2 + xd(2,:).^2);
res = [res, errnorm];
i = i+1;
end
f = sum(res)/(n*m);
iter = iter + 1;
fs = [fs f];
if iter > 1
errrel = norm(fs(iter-1) - f);
if fs(iter - 1) < f
errrel = 1e-10;
end;
end;
errabs = norm(f);
errlambda = norm(lambda_prev-lambda);
lambda_prev = lambda;
end % end while iter
disp('end rank based factorization - press ENTER');
pause;
clear xres;
res = [];
%-------------------
% final reprojection
for i = 1:m
j = indf(i);
XP(:,:,i) = P(i*3-2:i*3,:)*X;
xres(:,:,i) = Aguess*project(XP(:,:,i));
PC(:,:,i) = [Rhat(:,:,i) That(:,i)];
xd = xim(1:2,:,j) - xres(1:2,:,i);
errnorm = sqrt(xd(1,:).^2 + xd(2,:).^2);
res(i) = sum(errnorm)/(m*n);
end
figure; hold on;
plot3(2*X(1,:),2*X(2,:),2*X(3,:),'k.'); box on; view(220,20);
title('Projective reconstruction from multiple views');
xlabel('x'); ylabel('y'); zlabel('z');
for i = 1:m
Ts = That(:,i)*2*i*scale;
plot3(Ts(1),Ts(2),Ts(3),'r.','MarkerSize',14);
end
disp('projective reconstruction from multiple views - press ENTER');
pause;
%------------------------------------------------------------
% self-calibration - linear algorithm for unknown focal length
% set up the constraints on absolute quadric
Omega = quadric_linear_f(PC);
if Omega(1,1) < 0;
Omega = - Omega
end
for k = 1:m
t = PC(:,:,k)*Omega*PC(:,:,k)';
fest(k) = sqrt(t(1,1)/t(3,3));
fest2(k) = sqrt(t(2,2)/t(3,3));
Atmp(:,:,k) = Aguess*[fest(k) 0 0; 0 fest(k) 0; 0 0 1];
end
%-------------------------------------------------------
% Estimate the projective to euclidean upgrade transf Hp
v = -[Omega(1,4)/(fest(1)^2); Omega(2,4)/(fest2(1)^2); Omega(3,4)];
K1 = [fest(1) 0 0; 0 fest2(1) 0 ; 0 0 1];
v4 = 1;
Hp = [K1 zeros(3,1); -v'*K1 v4];
%------------------------------------
% update the structure to Euclidean
Xe = inv(Hp)*X;
Xe = [Xe(1,:,1)./Xe(4,:,1);Xe(2,:,1)./Xe(4,:,1);Xe(3,:,1)./Xe(4,:,1);ones(1,size(X,2))];
if (sum(sign(Xe(3,:,1))) < 0) & (sum(sign(Xe(3,:,1))) == -size(Xe,2))
Hp = [K1 zeros(3,1); -v'*K1 -v4];
Xe = inv(Hp)*X;
warning('Flipping the sign of Hp');
elseif (sum(sign(Xe(3,:,1))) < 0) & (sum(sign(Xe(3,:,1))) ~= -size(Xe,2))
error('Projective upgrade: some of the depths are negative');
end;
%-------------------------------
% update the projection matrices
PP = P*Hp;
%------------------------------------------------------
% rigid body motion and 3D Euclidean structure recovery
for i = 1:m
k = indf(i);
Re(:,:,i) = PP(i*3-2:i*3,1:3);
[r,q] = rq(Re(:,:,i));
Arem(:,:,i) = r; % /r(3,3); % calibration matrix
Re(:,:,i) = q; % rotation matrix
Te(:,i) = inv(Arem(:,:,i))*PP(i*3-2:i*3,4);
Xe(:,:,i) = [Re(:,:,i) Te(:,i); 0 0 0 1]*[Xe(:,:,1)];
end;
%------------------------------
% plot euclidean reconstruction
figure;
gs = 100; % global scale
plot3(gs*Xe(1,:,1),gs*Xe(2,:,1),gs*Xe(3,:,1),'k.'); hold on; box on;
xlabel('x'); ylabel('y'); zlabel('z');
draw_scale = gs*Xe(3,1,1)/6;
for i=1:size(Xe,2)
text(gs*Xe(1,i,1)+2, gs*Xe(2,i,1)+2, gs*Xe(3,i,1), num2str(i));
end;
title('Euclidean reconstruction from multiple views');
view(220,20); grid off; axis equal; % axis off;
for i=1:4:m
draw_frame_scaled([Re(:,:,i)' gs*(-Re(:,:,i)'*Te(:,i))], draw_scale);
end
axis equal; box on; % view(-8,-60);
disp('Euclidean reconstruction complete - press ENTER');
pause
%-------------------------------------------------------------
% Here should go nonlinear refinement to improve the estimates
%-------------------------------------------------------------
%------------------------------------------
% estimate rectifying transformations H1, H2
Fr = dfundamental(xim(:,:,1), xim(:,:,m));
im0 = seq(1).im;
im1 = seq(m).im;
for i=1:n
epil2r(:,i) = Fr*xim(:,i,1);
epil1r(:,i) = Fr'*xim(:,i,m);
end;
[H1, H2] = projRectify(Fr,xim(:,:,1), xim(:,:,m), xdim, ydim)
Tr = [1 0 -xdim/2; 0 1 -ydim/2 ; 0 0 1];
H1 = inv(Tr)*H1;
H2 = inv(Tr)*H2;
xim1r = project(H1*xim(:,:,1));
xim2r = project(H2*xim(:,:,m));
epil1rw = inv(H1)'*epil1r;
epil2rw = inv(H2)'*epil2r;
%-------------------------------------------------
% warped the two views such that the epipolar lines
% correpond to scanlines
[im0w, xi0, yi0] = Hwarp(H1, im0);
[im1w, xi1, yi1] = Hwarp(H2, im1);
[ydim0, xdim0] = size(im0w);
[ydim1, xdim1] = size(im1w);
f1 = figure; imagesc(im0w); colormap gray; hold on; axis image;
f2 = figure; imagesc(im1w); colormap gray; hold on; axis image;
%------------------------
% plot few epipolar lines
indl = [1, 3, 26, 61];
for k = 1:size(indl,2);
i = indl(k);
figure(f1); hold on;
plotLineNormal(epil1rw(:,i),xdim0,ydim0);
axis([1 xdim0 1 ydim0]);
figure(f2); hold on;
plotLineNormal(epil2rw(:,i),xdim1,ydim1);
axis([1 xdim1 1 ydim1]);
end;
disp('warped first and last view - END');