-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathlb.f
245 lines (178 loc) · 6.08 KB
/
lb.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
C A short and simple gravity-driven LBM solver based on the code snippets
C in Sukop and Thorne's 'Lattice Boltzmann Modeling'
C Note indexing differences between book's C code and FORTRAN:
C C uses 0 for the first index value, while FORTRAN starts at one.
C Numerous changes are needed. In some places, we have just
C explicitly added one to the C index.
parameter(ly=11,lx=3)
integer is_solid_node(ly,lx)
real rho(ly,lx),f(ly,lx,9),ftemp(ly,lx,9),ex(9),ey(9),
+ u_x(ly,lx),u_y(ly,lx),x(ly,lx),y(ly,lx),feq(ly,lx,9)
tau = 1.
g=0.001
C Set solid nodes at walls on top and bottom
is_solid_node=0
do i=1,lx
is_solid_node(1,i)=1
is_solid_node(LY,i)=1
enddo
C Set initial density
rho=1.
do j=1,ly
do i=1,lx
f(j,i,1) = (4./9. )*rho(j,i)
f(j,i,2) = (1./9. )*rho(j,i)
f(j,i,3) = (1./9. )*rho(j,i)
f(j,i,4) = (1./9. )*rho(j,i)
f(j,i,5) = (1./9. )*rho(j,i)
f(j,i,6) = (1./36.)*rho(j,i)
f(j,i,7) = (1./36.)*rho(j,i)
f(j,i,8) = (1./36.)*rho(j,i)
f(j,i,9) = (1./36.)*rho(j,i)
enddo
enddo
C Define lattice velocity vectors
ex(0+1)= 0
ey(0+1)= 0
ex(1+1)= 1
ey(1+1)= 0
ex(2+1)= 0
ey(2+1)= 1
ex(3+1)=-1
ey(3+1)= 0
ex(4+1)= 0
ey(4+1)=-1
ex(5+1)= 1
ey(5+1)= 1
ex(6+1)=-1
ey(6+1)= 1
ex(7+1)=-1
ey(7+1)=-1
ex(8+1)= 1
ey(8+1)=-1
C Time loop
do ts=1,300
write(*,*) ts
C Computing macroscopic density, rho, and velocity, u=(ux,uy).
do j=1,ly
do i=1,lx
u_x(j,i) = 0.0
u_y(j,i) = 0.0
rho(j,i) = 0.0
if(is_solid_node(j,i).eq.0) then
do k=1,9
rho(j,i) = rho(j,i) + f(j,i,k)
u_x(j,i) = u_x(j,i) + ex(k)*f(j,i,k)
u_y(j,i) = u_y(j,i) + ey(k)*f(j,i,k)
enddo
u_x(j,i) = u_x(j,i)/rho(j,i)
u_y(j,i) = u_y(j,i)/rho(j,i)
endif
C Add space matricies for plotting
x(j,i)=i
y(j,i)=j
enddo
enddo
C Compute the equilibrium distribution function, feq.
f1=3.
f2=9./2.
f3=3./2.
do j=1,ly
do i=1,lx
if(is_solid_node(j,i).eq.0) then
rt0 = (4./9. )*rho(j,i)
rt1 = (1./9. )*rho(j,i)
rt2 = (1./36.)*rho(j,i)
ueqxij = u_x(j,i)+tau*g
ueqyij = u_y(j,i)
uxsq = ueqxij * ueqxij
uysq = ueqyij * ueqyij
uxuy5 = ueqxij + ueqyij
uxuy6 = -ueqxij + ueqyij
uxuy7 = -ueqxij -ueqyij
uxuy8 = ueqxij -ueqyij
usq = uxsq + uysq
feq(j,i,0+1) = rt0*(1. - f3*usq)
feq(j,i,1+1) = rt1*(1.+ f1*ueqxij+f2*uxsq - f3*usq)
feq(j,i,2+1) = rt1*(1.+ f1*ueqyij+f2*uysq - f3*usq)
feq(j,i,3+1) = rt1*(1.- f1*ueqxij+f2*uxsq - f3*usq)
feq(j,i,4+1) = rt1*(1.- f1*ueqyij+f2*uysq - f3*usq)
feq(j,i,5+1) = rt2*(1.+ f1*uxuy5 +f2*uxuy5*uxuy5-f3*usq)
feq(j,i,6+1) = rt2*(1.+ f1*uxuy6 +f2*uxuy6*uxuy6-f3*usq)
feq(j,i,7+1) = rt2*(1.+ f1*uxuy7 +f2*uxuy7*uxuy7-f3*usq)
feq(j,i,8+1) = rt2*(1.+ f1*uxuy8 +f2*uxuy8*uxuy8-f3*usq)
endif
enddo
enddo
C Collision step.
do j=1,ly
do i=1,lx
if(is_solid_node(j,i).eq.1) then
C Standard bounceback
temp= f(j,i,1+1)
f(j,i,1+1) = f(j,i,3+1)
f(j,i,3+1) = temp
temp= f(j,i,2+1)
f(j,i,2+1) = f(j,i,4+1)
f(j,i,4+1) = temp
temp= f(j,i,5+1)
f(j,i,5+1) = f(j,i,7+1)
f(j,i,7+1) = temp
temp= f(j,i,6+1)
f(j,i,6+1) = f(j,i,8+1)
f(j,i,8+1) = temp
else
C Regular collision
do k=1,9
f(j,i,k) = f(j,i,k)-( f(j,i,k) - feq(j,i,k))/tau
enddo
endif
enddo
enddo
C Streaming step; subtle changes to periodicity here due to indexing
do j=1,ly
if (j.gt.1) then
jn = j-1
else
jn = LY
endif
if (j.lt.ly) then
jp = j+1
else
jp = 1
endif
do i=1,lx
if (i.gt.1) then
in = i-1
else
in = LX
endif
if (i.lt.LX) then
ip = i+1
else
ip = 1
endif
ftemp(j,i,0+1) = f(j,i,0+1)
ftemp(j,ip,1+1) = f(j,i,1+1)
ftemp(jp,i,2+1) = f(j,i,2+1)
ftemp(j,in,3+1) = f(j,i,3+1)
ftemp(jn,i ,4+1) = f(j,i,4+1)
ftemp(jp,ip,5+1) = f(j,i,5+1)
ftemp(jp,in,6+1) = f(j,i,6+1)
ftemp(jn,in,7+1) = f(j,i,7+1)
ftemp(jn,ip,8+1) = f(j,i,8+1)
enddo
enddo
f=ftemp
C End time loop
enddo
open(unit=20,file='x.dat',status='unknown')
open(unit=21,file='y.dat',status='unknown')
do j=1,ly
do i=1,lx
write(20,*) x(j,i),y(j,i),u_x(j,i)
write(21,*) x(j,i),y(j,i),u_y(j,i)
enddo
enddo
pause
end