-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathjacobi.py
66 lines (56 loc) · 2.22 KB
/
jacobi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
## module jacobi
''' lam,x = jacobi(a,tol = 1.0e-9).
Solution of std. eigenvalue problem [a]{x} = lam{x}
by Jacobi's method. Returns eigenvalues in vector {lam}
and the eigenvectors as columns of matrix [x].
'''
from numarray import array,identity,diagonal
from math import sqrt
def jacobi(a,tol = 1.0e-9): # Jacobi method
def maxElem(a): # Find largest off-diag. element a[k,l]
n = len(a)
aMax = 0.0
for i in range(n-1):
for j in range(i+1,n):
if abs(a[i,j]) >= aMax:
aMax = abs(a[i,j])
k = i; l = j
return aMax,k,l
def rotate(a,p,k,l): # Rotate to make a[k,l] = 0
n = len(a)
aDiff = a[l,l] - a[k,k]
if abs(a[k,l]) < abs(aDiff)*1.0e-36: t = a[k,l]/aDiff
else:
phi = aDiff/(2.0*a[k,l])
t = 1.0/(abs(phi) + sqrt(phi**2 + 1.0))
if phi < 0.0: t = -t
c = 1.0/sqrt(t**2 + 1.0); s = t*c
tau = s/(1.0 + c)
temp = a[k,l]
a[k,l] = 0.0
a[k,k] = a[k,k] - t*temp
a[l,l] = a[l,l] + t*temp
for i in range(k): # Case of i < k
temp = a[i,k]
a[i,k] = temp - s*(a[i,l] + tau*temp)
a[i,l] = a[i,l] + s*(temp - tau*a[i,l])
for i in range(k+1,l): # Case of k < i < l
temp = a[k,i]
a[k,i] = temp - s*(a[i,l] + tau*a[k,i])
a[i,l] = a[i,l] + s*(temp - tau*a[i,l])
for i in range(l+1,n): # Case of i > l
temp = a[k,i]
a[k,i] = temp - s*(a[l,i] + tau*temp)
a[l,i] = a[l,i] + s*(temp - tau*a[l,i])
for i in range(n): # Update transformation matrix
temp = p[i,k]
p[i,k] = temp - s*(p[i,l] + tau*p[i,k])
p[i,l] = p[i,l] + s*(temp - tau*p[i,l])
n = len(a)
maxRot = 5*(n**2) # Set limit on number of rotations
p = identity(n)*1.0 # Initialize transformation matrix
for i in range(maxRot): # Jacobi rotation loop
aMax,k,l = maxElem(a)
if aMax < tol: return diagonal(a),p
rotate(a,p,k,l)
print 'Jacobi method did not converge'