-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
51 lines (41 loc) · 1.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import numpy as np
from torch.utils.data import Dataset
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import os
class SpriteDataset(Dataset):
"""Sprite dataset class"""
def __init__(self, root, transform, target_transform):
self.images = np.load(os.path.join(root, "sprites_1788_16x16.npy"))
self.labels = np.load(os.path.join(root, "sprite_labels_nc_1788_16x16.npy"))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, idx):
image = self.transform(self.images[idx])
label = self.target_transform(self.labels[idx])
return image, label
def __len__(self):
return len(self.images)
def generate_animation(intermediate_samples, t_steps, fname, n_images_per_row=8):
"""Generates animation and saves as a gif file for given intermediate samples"""
intermediate_samples = [make_grid(x, scale_each=True, normalize=True,
nrow=n_images_per_row).permute(1, 2, 0).numpy() for x in intermediate_samples]
fig, ax = plt.subplots(figsize=(5, 5))
ax.axis("off")
img_plot = ax.imshow(intermediate_samples[0])
def update(frame):
img_plot.set_array(intermediate_samples[frame])
ax.set_title(f"T = {t_steps[frame]}")
fig.tight_layout()
return img_plot
ani = FuncAnimation(fig, update, frames=len(intermediate_samples), interval=200)
ani.save(fname)
def get_custom_context(n_samples, n_classes, device):
"""Returns custom context in one-hot encoded form"""
context = []
for i in range(n_classes - 1):
context.extend([i]*(n_samples//n_classes))
context.extend([n_classes - 1]*(n_samples - len(context)))
return torch.nn.functional.one_hot(torch.tensor(context), n_classes).float().to(device)