-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathHMC_Module_Phys_Convolution_Apps_SurfaceFlow.f90
1456 lines (1154 loc) · 75.1 KB
/
HMC_Module_Phys_Convolution_Apps_SurfaceFlow.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!------------------------------------------------------------------------------------
! File: HMC_Module_Phys_Convolution_Apps_SurfaceFlow.f90
!
! Author(s): Fabio Delogu, Francesco Silvestro, Simone Gabellani
! Date: 20190410
!
! Convolution Apps Surface subroutine(s) for HMC model
!------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------
! Module Header
module HMC_Module_Phys_Convolution_Apps_SurfaceFlow
!------------------------------------------------------------------------------------
! External module(s)
use HMC_Module_Namelist, only: oHMC_Namelist
use HMC_Module_Vars_Loader, only: oHMC_Vars
use HMC_Module_Tools_Debug
use HMC_Module_Phys_HydraulicStructure, only: HMC_Phys_Dam_Spilling, &
HMC_Phys_Dam_Discharge, &
HMC_Phys_Lake_Tank
use HMC_Module_Tools_Generic, only: getIntValue, getIntRange
use HMC_Module_Phys_Convolution_Apps_Flooding, only: HMC_Phys_Convolution_Apps_Flooding
! Implicit none for all subroutines in this module
implicit none
!------------------------------------------------------------------------------------------
contains
!------------------------------------------------------------------------------------------
! Subroutine for calculating surface flow channel network
subroutine HMC_Phys_Convolution_Apps_SurfaceFlow_ChannelNetwork(iID, iRows, iCols, &
dDtDataForcing, dDtAct, iTAct, iTq, iDtMax, &
iNData, iNDam, iNLake, &
iNPlant, iNCatch, iNRelease, iNJoint, &
iTime, iNTime, iETime)
!------------------------------------------------------------------------------------------
! Variable(s) declaration
integer(kind = 4) :: iID, iRows, iCols, iTAct, iTq, iDtMax
integer(kind = 4) :: iNData, iNDam, iNLake, iNPlant, iNCatch, iNRelease, iNJoint
integer(kind = 4) :: iShift, iRank
real(kind = 4) :: dDtDataForcing, dDtAct
integer(kind = 4) :: iTTemp
integer(kind = 4) :: iI, iII, iIII, iJ, iJJ, iJJJ, iP, iR, iD, iL, iC
integer(kind = 4) :: iIm, iJm, iIin, iJin, iIout, iJout
real(kind = 4) :: dHm, dHin
real(kind = 4) :: dDtSurfaceFlow
integer(kind = 4) :: iFlagReleaseMass
integer(kind = 4) :: iVarPNT
real(kind = 4) :: dUMax
real(kind = 4) :: dRm, dBc
real(kind = 4) :: dVLake, dDh, dDhPrev, dRoutPrev
real(kind = 4) :: dQt, dHinFD
real(kind = 4) :: dVarAreaCell, dVarTcCatch, dVarQMinCatch
real(kind = 4), dimension (iRows, iCols) :: a2dVarIntensityPrev, a2dVarIntensityUpd
real(kind = 4), dimension (iRows, iCols) :: a2dVarHydroPrev, a2dVarHydroUpd
real(kind = 4), dimension (iRows, iCols) :: a2dVarFlowExf
real(kind = 4), dimension (iRows, iCols) :: a2dVarUcAct, a2dVarUhAct
real(kind = 4), dimension (iRows, iCols) :: a2dVarQDisOut, a2dVarQVolOut
real(kind = 4), dimension (iRows, iCols) :: a2dVarRouting
real(kind = 4), dimension (iNDam) :: a1dVarVDam, a1dVarHDam, a1dVarLDam, &
a1dVarCoeffDam, a1dVarQoutDam
real(kind = 4), dimension (iNLake) :: a1dVarVLake
real(kind = 4), dimension (iNPlant) :: a1dVarQPlant
real(kind = 4), dimension (iNPlant, iETime + 1) :: a2dVarHydroPlant
real(kind = 4), dimension (iNCatch, iETime + 1) :: a2dVarHydroCatch
real(kind = 4), dimension (iNRelease, iETime + 1) :: a2dVarHydroRelease
integer(kind=4) :: iTime, iNTime, iETime
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Variable(s) initialization
a2dVarIntensityPrev = 0.0; a2dVarIntensityUpd = 0.0;
a2dVarHydroPrev = 0.0; a2dVarHydroUpd = 0.0;
a2dVarUcAct = 0.0; a2dVarUhAct = 0.0;
a2dVarFlowExf = 0.0; a2dVarRouting = 0.0;
a2dVarQDisOut = 0.0 ! Outgoing discharge in m^3/s from each cell
a2dVarQVolOut = 0.0 ! Outgoing discharge in volume from each cell
a1dVarVDam = 0.0; a1dVarHDam = 0.0; a1dVarLDam = 0.0; a1dVarCoeffDam = 0.0; a1dVarQoutDam = 0.0
a1dVarVLake = 0.0;
a1dVarQPlant = 0.0;
a2dVarHydroPlant = 0.0;
a2dVarHydroCatch = 0.0;
a2dVarHydroRelease = 0.0;
! Null global variable(s)
oHMC_Vars(iID)%a2dQVolOut = 0.0 ! Initialize each step (Portata in volume in uscita da una cella == Qtmp)
oHMC_Vars(iID)%a2dQDisOut = 0.0 ! Initialize each step (Portata in uscita da una cella == Qout)
oHMC_Vars(iID)%a1dQoutDam = 0.0
!oHMC_Vars(iID)%a2dHydroPrev = 0.0 ! Initialize each step
dDh = 0.0
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Temporal step
iTTemp = int(iTAct)
! Integrating step (SurfaceFlow)
dDtSurfaceflow = dDtAct
! Variable(s) time dependent from global declaration
a2dVarFlowExf = oHMC_Vars(iID)%a2dFlowExf
a2dVarHydroPrev = oHMC_Vars(iID)%a2dHydro
a2dVarIntensityPrev = oHMC_Vars(iID)%a2dIntensity
a2dVarRouting = oHMC_Vars(iID)%a2dRouting
! Dam variable(s)
a1dVarVDam = oHMC_Vars(iID)%a1dVDam
a1dVarHDam = oHMC_Vars(iID)%a1dHDam
a1dVarLDam = oHMC_Vars(iID)%a1dLDam
a1dVarCoeffDam = oHMC_Vars(iID)%a1dCoeffDam
! Lake variable(s)
a1dVarVLake = oHMC_Vars(iID)%a1dVLake
! Plant data variable(s)
a2dVarHydroPlant = oHMC_Vars(iID)%a2dHydroPlant
! Catch data variable(s)
a2dVarHydroCatch = oHMC_Vars(iID)%a2dHydroCatch
! Release data variable(s)
a2dVarHydroRelease = oHMC_Vars(iID)%a2dHydroRelease
! Exponent of dUcAct formula
dBc = oHMC_Namelist(iID)%dBc
! Activate/Deactivate release mass update
iFlagReleaseMass = oHMC_Namelist(iID)%iFlagReleaseMass
! Info start
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' Phys :: Convolution :: SurfaceFlow ... ' )
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Debug
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' ========= SURFACE FLOW START ========= ')
call mprintf(.true., iINFO_Extra, checkvar(oHMC_Vars(iID)%a2dAreaCell, oHMC_Vars(iID)%a2iMask, 'AREACELL') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroUpd, oHMC_Vars(iID)%a2iMask, 'HYDRO UPD START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroPrev, oHMC_Vars(iID)%a2iMask, 'HYDRO PREV START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQDisOut, oHMC_Vars(iID)%a2iMask, 'QDIS OUT START (Qout)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQVolOut, oHMC_Vars(iID)%a2iMask, 'QVOL OUT START (Qtmp)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarRouting, oHMC_Vars(iID)%a2iMask, 'ROUTING START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarIntensityPrev, oHMC_Vars(iID)%a2iMask, 'INTENSITY START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarFlowExf, oHMC_Vars(iID)%a2iMask, 'EXFILTRATION START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroPlant(:,2), 'HYDRO PLANT START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroCatch(:,2), 'HYDRO CATCH START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroRelease(:,2), 'HYDRO RELEASE START') )
call mprintf(.true., iINFO_Extra, ' ')
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Channel max surface velocity (UcMax)
dUMax = 3600.0/dDtSurfaceflow*0.5
! Hill overland equation
a2dVarUhAct = oHMC_Vars(iID)%a2dUh
where ( (oHMC_Vars(iID)%a2iChoice.eq.0) .and. (a2dVarUhact.gt.dUMax)) ! numerical check
a2dVarUhAct = dUMax
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Hydro variable (previous and update array)
where (a2dVarHydroPrev .lt. 0.0)
a2dVarHydroPrev = 0.0000001
endwhere
where (a2dVarHydroPrev .gt. 100000.0)
a2dVarHydroPrev = 0.0000001
endwhere
! Updating hydro variable (using previous step and checking values under zero) --> WaterLevel (tirante)
a2dVarHydroUpd = a2dVarHydroPrev
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Routing variable
where( a2dVarRouting .lt. 0.0)
a2dVarRouting = 0.0
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Intensity variable (previous and update)
where(a2dVarIntensityPrev.lt.0.0)
a2dVarIntensityPrev = 0.0
endwhere
! Updating variables surface cell input (exfiltration + runoff [mm/h]) --> CHECKING CONVERSION
where(oHMC_Vars(iID)%a2iMask.gt.0.0)
a2dVarIntensityUpd = a2dVarIntensityPrev + a2dVarFlowExf*1000.0*3600.0 + &
(1 - oHMC_Vars(iID)%a2dCoeffResol)*a2dVarRouting/dDtSurfaceflow*3600.0 + &
!(1 - oHMC_Vars(iID)%a2dCoeffResol)*oHMC_Vars(iID)%a2dFlowDeep + & ! Tevere settings ( --- development mode ---)
(oHMC_Vars(iID)%a2dWSRunoff*1000.0*3600.0)/oHMC_Vars(iID)%a2dAreaCell ! WSRunoff from m^3/s to mm/h
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check plant(s) availability
if (iNPlant .gt. 0) then
!------------------------------------------------------------------------------------------
! Cycle on plant(s)
iP = 0;
do iP = 1, iNPlant
!------------------------------------------------------------------------------------------
! Get plant information
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYPlant(iP, 2);
iJ = oHMC_Vars(iID)%a2iXYPlant(iP, 1);
dVarAreaCell = oHMC_Vars(iID)%a2dAreaCell(iI, iJ)
! Check area cell
if (dVarAreaCell.lt.0) then
dVarAreaCell = oHMC_Vars(iID)%dDxM*oHMC_Vars(iID)%dDyM
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Add plant data to intensity and updata dam volume
if (a2dVarHydroPlant(iP, iTTemp + 1) .ge. 0) then !Se ho le turbinate (si presume che i tempi siano relativi all'immissione)
!------------------------------------------------------------------------------------------
! Update intensity
a2dVarIntensityUpd(iI, iJ) = a2dVarIntensityUpd(iI, iJ) + a2dVarHydroPlant(iP, iTTemp + 1)
! Update dam volume
a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) = a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) - &
a2dVarHydroPlant(iP, iTTemp + 1)*(dVarAreaCell)/(1000*3600)*dDtSurfaceflow !m^3
!------------------------------------------------------------------------------------------
else
!------------------------------------------------------------------------------------------
! Compute plant max discharge (transform to mm/h)
if ( a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) .lt. &
oHMC_Vars(iID)%a1dVMaxDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) )then
! VDam < VDamMax --> Q**6;
a1dVarQPlant(iP) = oHMC_Vars(iID)%a1dQMaxPlant(iP)* &
(a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP))/ &
oHMC_Vars(iID)%a1dVMaxDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)))**6
else
! VDam => VDamMax --> QMax
a1dVarQPlant(iP) = oHMC_Vars(iID)%a1dQMaxPlant(iP)
endif
! Check plant discharge
if (a1dVarQPlant(iP) .lt. 0.0) a1dVarQPlant(iP) = 0.0
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Update intensity
a2dVarIntensityUpd(iI, iJ) = a2dVarIntensityUpd(iI, iJ) + &
a1dVarQPlant(iP)*1000*3600/(dVarAreaCell)
! Update dam volume
a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) = a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) - &
a1dVarQPlant(iP)*dDtSurfaceflow
!write(*,*) a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)), a1dVarQPlant(iP)
!------------------------------------------------------------------------------------------
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check dam volume
if(a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) .lt. 0.0) a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) = 0.0
!------------------------------------------------------------------------------------------
enddo
!------------------------------------------------------------------------------------------
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check release(s) availability
if (iNRelease .gt. 0) then
!------------------------------------------------------------------------------------------
! Cycle on release(s)
iR = 0;
do iR = 1, iNRelease
!------------------------------------------------------------------------------------------
! Get plant information
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYRelease(iR, 2); iJ = oHMC_Vars(iID)%a2iXYRelease(iR, 1);
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check hydro release(s) data
if (a2dVarHydroRelease(iR,iTTemp + 1) .lt. 0.0) a2dVarHydroRelease(iR,iTTemp + 1) = 0.0
! Update intensity using hydro release
a2dVarIntensityUpd(iI, iJ) = a2dVarIntensityUpd(iI, iJ) + a2dVarHydroRelease(iR,iTTemp + 1)
!------------------------------------------------------------------------------------------
enddo
!------------------------------------------------------------------------------------------
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Surface Routing
! HILLS
! Surface equation for hills (direct euler's method)
where ( (oHMC_Vars(iID)%a2iChoice.eq.0.0) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0) )
a2dVarHydroUpd = a2dVarHydroUpd + a2dVarIntensityUpd*dDtSurfaceflow/3600 - &
a2dVarHydroUpd*a2dVarUhAct*dDtSurfaceflow/3600.0
a2dVarQDisOut = a2dVarHydroPrev*a2dVarUhAct*dDtSurfaceflow/3600.0
endwhere
! CHANNELS
! Surface equation for channels (direct euler's method)
where ( (oHMC_Vars(iID)%a2iChoice.eq.1.0) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0) )
a2dVarUcAct = oHMC_Vars(iID)%a2dUc*(tan(oHMC_Vars(iID)%a2dBeta)**0.5)*a2dVarHydroUpd**dBc ! FPI settings
where (a2dVarUcAct.gt.dUMax)
a2dVarUcAct = dUMax
endwhere
a2dVarQDisOut = a2dVarHydroUpd*a2dVarUcAct*dDtSurfaceflow/3600.0
! Surface tank equation (runoff with routing + exfiltration)
a2dVarHydroUpd = a2dVarHydroUpd + a2dVarIntensityUpd*dDtSurfaceflow/3600 - &
a2dVarHydroUpd*a2dVarUcAct*dDtSurfaceflow/3600.0
endwhere
where ( (oHMC_Vars(iID)%a2iChoice.eq.1.0) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0) )
a2dVarQDisOut = oHMC_Vars(iID)%a2dUc*(tan(oHMC_Vars(iID)%a2dBeta)**0.5)*(0.5*a2dVarHydroPrev**(1 + dBc) + &
0.5*a2dVarHydroUpd**(1 + dBc))*dDtSurfaceflow/3600
where (a2dVarQDisOut .gt. (a2dVarHydroPrev + a2dVarIntensityUpd*dDtSurfaceflow/3600)*0.7)
a2dVarQDisOut = (a2dVarHydroPrev + a2dVarIntensityUpd*dDtSurfaceflow/3600)*0.7
endwhere
a2dVarHydroUpd = a2dVarHydroPrev + a2dVarIntensityUpd*dDtSurfaceflow/3600 - a2dVarQDisOut
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check dam availability
if (iNDam .gt. 0) then
! Cycle on dam(s)
iD = 0;
do iD = 1, iNDam
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYDam(iD, 2); iJ = oHMC_Vars(iID)%a2iXYDam(iD, 1);
! Lake condition
if (oHMC_Vars(iID)%a1dCodeDam(iD) .gt. 0.0) then
! Distributed lake
dVLake = 0.0;
dVLake = sum(sum(a2dVarIntensityUpd, dim=1, mask=oHMC_Vars(iID)%a2iChoice.eq.oHMC_Vars(iID)%a1dCodeDam(iD)))
a1dVarVDam(iD) = a1dVarVDam(iD) + dVLake*dDtSurfaceflow/(3600*1000)*(oHMC_Vars(iID)%a2dAreaCell(iI, iJ)) ! in m^3
else
! Punctual lake
a1dVarVDam(iD) = a1dVarVDam(iD) + a2dVarQDisOut(iI, iJ)/1000*(oHMC_Vars(iID)%a2dAreaCell(iI, iJ))
!write(*,*) 'id, dam v, q ',iD, a1dVarVDam(iD), a2dVarQDisOut(iI, iJ)/1000*(oHMC_Vars(iID)%a2dAreaCell(iI, iJ))
endif
a2dVarQDisOut(iI, iJ) = 0.0
enddo
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check lake availability
if (iNLake .gt. 0) then
! Cycle on lake
iL = 0;
do iL = 1, iNLake
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYLake(iL, 2); iJ = oHMC_Vars(iID)%a2iXYLake(iL, 1);
if (oHMC_Vars(iID)%a1dCodeLake(iL) .gt. 0) then
! Distributed lake
dVLake = 0.0;
dVLake = sum(sum(a2dVarIntensityUpd, dim=1, mask=oHMC_Vars(iID)%a2iChoice.eq.oHMC_Vars(iID)%a1dCodeLake(iL)))
a1dVarVLake(iL) = a1dVarVLake(iL) + dVLake*dDtSurfaceflow/(3600*1000)*(oHMC_Vars(iID)%a2dAreaCell(iI, iJ)) ! in m^3
else
! Punctual lake
a1dVarVLake(iL) = a1dVarVLake(iL) + a2dVarQDisOut(iI, iJ)/1000*(oHMC_Vars(iID)%a2dAreaCell(iI, iJ))
endif
a2dVarQDisOut(iI, iJ) = 0.0
enddo
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Flow part for following cell
! In Horton this flow will add at rain rate in the following step
! Checking hydro variable
where(a2dVarHydroUpd.lt.0.0)
a2dVarHydroUpd = 0.0000001
endwhere
! Calculating flow
! Calcolo la porzione di acqua che va nella cella successiva
! Essa verr� sommata alla pioggia nella subroutine di Horton
! l'istante successivo
a2dVarRouting = 0.0
do iI = 1, iRows
do iJ = 1, iCols
! DEM condition
if (oHMC_Vars(iID)%a2iMask(iI,iJ).gt.0.0) then
! Rate and pointers definition
!iVarPNT = 0
!iVarPNT = int(oHMC_Vars(iID)%a2iPNT(iI,iJ))
! Defining flow directions
iII = int((int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 1)/3) - 1
iJJ = int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 5 - 3*iII
iIII = iI + iII
iJJJ = iJ + iJJ
if ( (iIII.ge.1) .and. (iJJJ.ge.1) ) then
! Integrazione del routing in mm/passo_integrazione_del_routing
! L'acqua viene mandata nella cella successiva e utilizzata nella Subrotine
! Horton
dRm = 0.0;
dRm = a2dVarQDisOut(iI, iJ) ! Trapezi
a2dVarRouting(iIII, iJJJ) = a2dVarRouting(iIII, iJJJ) + dRm ![mm]
a2dVarQVolOut(iI, iJ) = dRm/dDtSurfaceflow
endif
endif
enddo
enddo
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check catch availability
if (iNCatch .gt. 0) then
! Cycle on catch(es) ---> subtract turbinate(s) from routing
iC = 0;
do iC = 1, iNCatch
iI = 0; iJ = 0; dDh = 0.0
iI = oHMC_Vars(iID)%a2iXYCatch(iC, 2); iJ = oHMC_Vars(iID)%a2iXYCatch(iC, 1);
dVarTcCatch = oHMC_Vars(iID)%a1dTCorrCatch(iC)
dVarQminCatch = oHMC_Vars(iID)%a1dQMinCatch(iC)
dVarAreaCell = oHMC_Vars(iID)%a2dAreaCell(iI, iJ)
! Check area cell
if (dVarAreaCell.lt.0) then
dVarAreaCell = oHMC_Vars(iID)%dDxM*oHMC_Vars(iID)%dDyM
endif
! Compute minimum discharge
dVarQminCatch = oHMC_Vars(iID)%a1dQMinCatch(iC)/dVarAreaCell*dDtSurfaceflow*1000 ! [mm]
! Compute h
dDh = a2dVarHydroCatch(iC, iTTemp + 1)/dVarAreaCell*dDtSurfaceflow*1000 ! [mm]
! Avoid < 0 values in turbinate for mismatch in length of simulation
if (dDh.lt.0.0) dDh = 0.0
! Defining flow directions
iII = int((int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 1)/3) - 1
iJJ = int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 5 - 3*iII
iIII = iI + iII
iJJJ = iJ + iJJ
! Index(es) not allowed
dRoutPrev = 0.0
if( (iIII.ge.1) .and. (iJJJ.ge.1) ) then
dRoutPrev = a2dVarRouting(iIII, iJJJ)
! Q less than QMV
if(a2dVarRouting(iIII, iJJJ).le.dVarQminCatch) then
dDh = 0.0
! Q larger than QMV
else
! Q-QMV < Qplant
if((a2dVarRouting(iIII, iJJJ) - dDh).lt.dVarQminCatch) then
dDh = a2dVarRouting(iIII, iJJJ)-dVarQminCatch
endif
endif
!Q - QplantCorrected
a2dVarRouting(iIII, iJJJ)=a2dVarRouting(iIII, iJJJ)-dDh
! Update data release(s)
if (iFlagReleaseMass .eq. 1) then ! activate/deactivate release mass update
if (iNCatch .eq. iNRelease) then
iShift = nint(dVarTcCatch*60/dDtDataForcing)
iRank = size(a2dVarHydroRelease, dim = 2)
if (iTTemp + iShift .lt. iRank ) then
a2dVarHydroRelease(iC, iTTemp + 1) = dDh/dDtSurfaceflow*3600
endif
endif
endif
if(a2dVarRouting(iIII, iJJJ).lt.0.0)then
a2dVarRouting(iIII, iJJJ) = 0.0
endif
endif
enddo
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check joint availability
if (iNJoint .gt. 0) then
! Cycle on joint(s)
iJ = 0;
do iJ = 1, iNJoint
iIm = 0; iJm = 0; iIin = 0; iJin = 0;
iIm = oHMC_Vars(iID)%a2iXYJoint(iJ,2); iJm = oHMC_Vars(iID)%a2iXYJoint(iJ,1);
iIin = oHMC_Vars(iID)%a2iXYInJoint(iJ,2); iJin = oHMC_Vars(iID)%a2iXYInJoint(iJ,1);
dHm = 0.0; dHin = 0.0;
dHm = a2dVarHydroUpd(iIm, iJm) !dH2
dHin = a2dVarHydroUpd(iIin,iJin) !dH1
if ( (dHin.lt.dHm) .and. (dHm.gt.0.0) ) then
dQt = 0.0; dHinFD = 0.0;
dQt = a2dVarQVolOut(iIin, iJin)/1000 + oHMC_Vars(iID)%a2dAreaCell(iIm, iJm) ! in [m^3/s]
dHinFD = sqrt(dHin**2 + 1000*1000*2*(dQt**2)/(oHMC_Vars(iID)%a2dAreaCell(iIm, iJm)*9.8*dHin/1000)) ! derivata eq delle spinte
if (dHinFD/dHm .lt. oHMC_Vars(iID)%a1dThrLevelJoint(iJ)) then
iIout = 0; iJout = 0;
iIout = oHMC_Vars(iID)%a2iXYOutJoint(iJ,2); iJout = oHMC_Vars(iID)%a2iXYOutJoint(iJ,1);
! Main channel
a2dVarRouting(iIout,iJout) = a2dVarRouting(iIout,iJout) + a2dVarRouting(iIm,iJm)*(1 - dHinFD/dHm) ! Routing dove immetto la derivazione del Master
a2dVarRouting(iIm,iJm) = a2dVarRouting(iIm,iJm)*dHinFD/dHm ! Routing in main channel
! Tributary channel
a2dVarRouting(iIout,iJout) = a2dVarRouting(iIout,iJout) + a2dVarRouting(iIin,iJin)*(1 - dHinFD/dHm) ! Routing dove immetto la derivazione dell'immissario
a2dVarRouting(iIin,iJin) = a2dVarRouting(iIin,iJin)*dHinFD/dHm ! Routing in main channel
endif
endif
enddo
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Compute dam spilling
call HMC_Phys_Dam_Spilling(iID, iNDam, dDtSurfaceflow, &
a1dVarVDam, a1dVarQoutDam, a1dVarCoeffDam, a1dVarLDam)
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check dam availability
if (iNDam .gt. 0) then
! Cycle on dam
iD = 0
do iD = 1, iNDam
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYDam(iD, 2); iJ = oHMC_Vars(iID)%a2iXYDam(iD, 1);
! Pointers definition
!iVarPNT = 0
!iVarPNT = int(oHMC_Vars(iID)%a2iPNT(iI,iJ))
! Defining flow directions
iII = int((int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 1)/3) - 1
iJJ = int(oHMC_Vars(iID)%a2iPNT(iI,iJ)) - 5 - 3*iII
iIII = iI + iII
iJJJ = iJ + iJJ
! Update routing
a2dVarRouting(iIII, iJJJ) = a2dVarRouting(iIII, iJJJ) + a1dVarQoutDam(iD)
! Volume to mean dam level [mm]
where( oHMC_Vars(iID)%a2iChoice.eq.oHMC_Vars(iID)%a1dCodeDam(iD) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0) )
a2dVarHydroUpd = a1dVarVDam(iD)/(oHMC_Vars(iID)%a1iNCellDam(iD)*oHMC_Vars(iID)%a2dAreaCell(iI,iJ))*1000 ! [mm]
endwhere
enddo
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Debug
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' ')
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroUpd, oHMC_Vars(iID)%a2iMask, 'HYDRO UPD END') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroPrev, oHMC_Vars(iID)%a2iMask, 'HYDRO PREV END') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQDisOut, oHMC_Vars(iID)%a2iMask, 'QDIS OUT END (Qout)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQVolOut, oHMC_Vars(iID)%a2iMask, 'QVOL OUT END (Qtmp)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarRouting, oHMC_Vars(iID)%a2iMask, 'ROUTING END') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarIntensityUpd, oHMC_Vars(iID)%a2iMask, 'INTENSITY END') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarFlowExf, oHMC_Vars(iID)%a2iMask, 'EXFILTRATION END') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroPlant(:,2), 'HYDRO PLANT END') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroCatch(:,2), 'HYDRO CATCH END') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroRelease(:,2), 'HYDRO RELEASE END') )
call mprintf(.true., iINFO_Extra, ' ========= SURFACE FLOW END =========== ')
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Updating model global variable(s)
oHMC_Vars(iID)%a2dQVolOut = a2dVarQVolOut
oHMC_Vars(iID)%a2dQDisOut = a2dVarQDisOut
oHMC_Vars(iID)%a2dHydro = a2dVarHydroUpd
oHMC_Vars(iID)%a2dHydroPrev = a2dVarHydroPrev
oHMC_Vars(iID)%a2dRouting = a2dVarRouting ! Compute to use in horton and after set to zero
oHMC_Vars(iID)%a1dVDam = a1dVarVDam
oHMC_Vars(iID)%a1dHDam = a1dVarHDam
oHMC_Vars(iID)%a1dLDam = a1dVarLDam
oHMC_Vars(iID)%a1dCoeffDam = a1dVarCoeffDam
oHMC_Vars(iID)%a1dQoutDam = a1dVarQoutDam
oHMC_Vars(iID)%a1dVLake = a1dVarVLake
oHMC_Vars(iID)%a2dHydroPlant = a2dVarHydroPlant
oHMC_Vars(iID)%a2dHydroCatch = a2dVarHydroCatch
oHMC_Vars(iID)%a2dHydroRelease = a2dVarHydroRelease
! Info end
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' Phys :: Convolution :: SurfaceFlow ... OK' )
endif
!------------------------------------------------------------------------------------------
end subroutine HMC_Phys_Convolution_Apps_SurfaceFlow_ChannelNetwork
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Subroutine for calculating surface flow channel fraction
subroutine HMC_Phys_Convolution_Apps_SurfaceFlow_ChannelFraction(iID, iRows, iCols, &
dDtDataForcing, dDtAct, iTAct, iTq, iDtMax, &
iNData, iNDam, iNLake, &
iNPlant, iNCatch, iNRelease, iNJoint, &
iTime, iNTime, iETime)
!------------------------------------------------------------------------------------------
! Variable(s) declaration
integer(kind = 4) :: iID, iRows, iCols, iTAct, iTq, iDtMax
integer(kind = 4) :: iNData, iNDam, iNLake, iNPlant, iNCatch, iNRelease, iNJoint
integer(kind = 4) :: iShift, iRank
real(kind = 4) :: dDtDataForcing, dDtAct
integer(kind = 4) :: iTTemp
integer(kind = 4) :: iI, iII, iIII, iJ, iJJ, iJJJ, iP, iR, iD, iL, iC
integer(kind = 4) :: iIm, iJm, iIin, iJin, iIout, iJout
real(kind = 4) :: dHm, dHin,dKint
real(kind = 4) :: dDtSurfaceFlow
integer(kind = 4) :: iFlagReleaseMass, iFlagFlood
integer(kind = 4) :: iVarPNT
real(kind = 4) :: dUMax
real(kind = 4) :: dRm, dBc
real(kind = 4) :: dVLake, dDh, dDhPrev, dRoutPrev
real(kind = 4) :: dQt, dHinFD
real(kind = 4) :: dVarAreaCell, dVarTcCatch, dVarQMinCatch
real(kind = 4) :: dPa, dPb, dTmmm !parameters for length of inundation
real(kind = 4), dimension (iRows, iCols) :: a2dVarIntensityPrev, a2dVarIntensityUpd
real(kind = 4), dimension (iRows, iCols) :: a2dVarHydroPrevC, a2dVarHydroUpdC
real(kind = 4), dimension (iRows, iCols) :: a2dVarHydroPrevH, a2dVarHydroUpdH
real(kind = 4), dimension (iRows, iCols) :: a2dVarFlowExf
real(kind = 4), dimension (iRows, iCols) :: a2dVarUcAct, a2dVarUhAct
real(kind = 4), dimension (iRows, iCols) :: a2dVarQDisOut, a2dVarQVolOut
real(kind = 4), dimension (iRows, iCols) :: a2dVarRouting
real(kind = 4), dimension (iRows, iCols) :: a2dPartition, a2dVarBF
real(kind = 4), dimension (iRows, iCols) :: a2dVarWidthC, a2dVarAreaCell, a2dVarWidthH
real(kind = 4), dimension (iNDam) :: a1dVarVDam, a1dVarHDam, a1dVarLDam, &
a1dVarCoeffDam, a1dVarQoutDam
real(kind = 4), dimension (iNLake) :: a1dVarVLake
real(kind = 4), dimension (iNPlant) :: a1dVarQPlant
real(kind = 4), dimension (iNPlant, iETime + 1) :: a2dVarHydroPlant
real(kind = 4), dimension (iNCatch, iETime + 1) :: a2dVarHydroCatch
real(kind = 4), dimension (iNRelease, iETime + 1) :: a2dVarHydroRelease
integer(kind=4) :: iTime, iNTime, iETime
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Variable(s) initialization
a2dVarIntensityPrev = 0.0; a2dVarIntensityUpd = 0.0;
a2dVarUcAct = 0.0; a2dVarUhAct = 0.0;
a2dVarFlowExf = 0.0; a2dVarRouting = 0.0;
a2dVarQDisOut = 0.0; ! Outgoing discharge in m^3/s from each cell
a2dVarQVolOut = 0.0; ! Outgoing discharge in volume from each cell
a1dVarVDam = 0.0; a1dVarHDam = 0.0; a1dVarLDam = 0.0; a1dVarCoeffDam = 0.0; a1dVarQoutDam = 0.0
a1dVarVLake = 0.0; a1dVarQPlant = 0.0;
a2dVarHydroPlant = 0.0;
a2dVarHydroCatch = 0.0;
a2dVarHydroRelease = 0.0;
a2dVarWidthC = 0.0; a2dVarAreaCell = 0.0; a2dVarWidthH = 0.0
a2dVarHydroPrevH = 0.0; a2dVarHydroUpdH = 0.0;
a2dVarHydroPrevC = 0.0; a2dVarHydroUpdC = 0.0;
a2dVarBF = 0.0;
! Null global variable(s)
oHMC_Vars(iID)%a2dQVolOut = 0.0 ! Initialize each step (Portata in volume in uscita da una cella == Qtmp)
oHMC_Vars(iID)%a2dQDisOut = 0.0 ! Initialize each step (Portata in uscita da una cella == Qout)
oHMC_Vars(iID)%a1dQoutDam = 0.0
!oHMC_Vars(iID)%a2dHydroPrev = 0.0 ! Initialize each step
dDh = 0.0
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Temporal step
iTTemp = int(iTAct)
! Integrating step (SurfaceFlow)
dDtSurfaceflow = dDtAct
! Limit for numerical integration
dKint = 0.75
! Flooding parameters
dPa = 2.5
dPb = 0.5
! Variable(s) time dependent from global declaration
a2dVarFlowExf = oHMC_Vars(iID)%a2dFlowExf
a2dVarIntensityPrev = oHMC_Vars(iID)%a2dIntensity
a2dVarRouting = oHMC_Vars(iID)%a2dRouting
a2dVarWidthC = oHMC_Vars(iID)%a2dWidthC
a2dVarAreaCell = oHMC_Vars(iID)%a2dAreaCell
a2dVarWidthH = oHMC_Vars(iID)%a2dWidthH
a2dVarHydroPrevH = oHMC_Vars(iID)%a2dHydroH
a2dVarHydroPrevC = oHMC_Vars(iID)%a2dHydroC
! Dam variable(s)
a1dVarVDam = oHMC_Vars(iID)%a1dVDam
a1dVarHDam = oHMC_Vars(iID)%a1dHDam
a1dVarLDam = oHMC_Vars(iID)%a1dLDam
a1dVarCoeffDam = oHMC_Vars(iID)%a1dCoeffDam
! Lake variable(s)
a1dVarVLake = oHMC_Vars(iID)%a1dVLake
! Plant data variable(s)
a2dVarHydroPlant = oHMC_Vars(iID)%a2dHydroPlant
! Catch data variable(s)
a2dVarHydroCatch = oHMC_Vars(iID)%a2dHydroCatch
! Release data variable(s)
a2dVarHydroRelease = oHMC_Vars(iID)%a2dHydroRelease
! Exponent of dUcAct formula
dBc = oHMC_Namelist(iID)%dBc
! Activate/Deactivate release mass update
iFlagReleaseMass = oHMC_Namelist(iID)%iFlagReleaseMass
! Flooding flag
iFlagFlood = oHMC_Namelist(iID)%iFlagFlood
! Info start
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' Phys :: Convolution :: SurfaceFlow ... ' )
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Debug
if (iDEBUG.gt.0) then
call mprintf(.true., iINFO_Extra, ' ========= SURFACE FLOW START ========= ')
call mprintf(.true., iINFO_Extra, checkvar(oHMC_Vars(iID)%a2dAreaCell, oHMC_Vars(iID)%a2iMask, 'AREACELL') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroUpdC, oHMC_Vars(iID)%a2iMask, 'HYDRO UPD START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarHydroPrevC, oHMC_Vars(iID)%a2iMask, 'HYDRO PREV START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQDisOut, oHMC_Vars(iID)%a2iMask, 'QDIS OUT START (Qout)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarQVolOut, oHMC_Vars(iID)%a2iMask, 'QVOL OUT START (Qtmp)') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarRouting, oHMC_Vars(iID)%a2iMask, 'ROUTING START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarIntensityPrev, oHMC_Vars(iID)%a2iMask, 'INTENSITY START') )
call mprintf(.true., iINFO_Extra, checkvar(a2dVarFlowExf, oHMC_Vars(iID)%a2iMask, 'EXFILTRATION START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroPlant(:,2), 'HYDRO PLANT START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroCatch(:,2), 'HYDRO CATCH START') )
call mprintf(.true., iINFO_Extra, checkarray(a2dVarHydroRelease(:,2), 'HYDRO RELEASE START') )
call mprintf(.true., iINFO_Extra, ' ')
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Partition coefficient and length of flooding
a2dPartition = 0.0;
where (oHMC_Vars(iID)%a2iMask.gt.0.0)
a2dPartition = (a2dVarWidthC/sqrt(a2dVarAreaCell))**((100.0/sqrt(a2dVarAreaCell))**0.35)
a2dVarBF = dPa*a2dVarWidthC**dPb
endwhere
where ( (oHMC_Vars(iID)%a2iMask.gt.0.0) .and. (a2dPartition.le.0) )
a2dPartition = 0.01
endwhere
where ( (oHMC_Vars(iID)%a2iMask.gt.0.0) .and. (a2dPartition.ge.1) )
a2dPartition = 0.99
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Channel max surface velocity (UcMax)
dUMax = 3600.0/dDtSurfaceflow*0.5
dTmmm = MAXVAL(MAXVAL(oHMC_Vars(iID)%a2dUh,dim=1,mask=oHMC_Vars(iID)%a2iChoice.le.1.and. &
oHMC_Vars(iID)%a2iMask.gt.0))
dTmmm = MAXVAL(MAXVAL(oHMC_Vars(iID)%a2dUc,dim=1,mask=oHMC_Vars(iID)%a2iChoice.le.1.and. &
oHMC_Vars(iID)%a2iMask.gt.0))
! Hill overland equation
a2dVarUhAct = oHMC_Vars(iID)%a2dUh
where ( (oHMC_Vars(iID)%a2iChoice.eq.0) .and. (a2dVarUhact.gt.dUMax) ) ! numerical check
a2dVarUhAct = dUMax
endwhere
a2dVarUcAct = oHMC_Vars(iID)%a2dUc
where ( (oHMC_Vars(iID)%a2iChoice.eq.0) .and. (a2dVarUcAct.gt.dUMax) ) ! numerical check
a2dVarUcAct = dUMax
endwhere
dTmmm = MAXVAL(MAXVAL(oHMC_Vars(iID)%a2dUh,dim=1,mask=oHMC_Vars(iID)%a2iChoice.le.1.and. &
oHMC_Vars(iID)%a2iMask.gt.0))
dTmmm = MAXVAL(MAXVAL(oHMC_Vars(iID)%a2dUc,dim=1,mask=oHMC_Vars(iID)%a2iChoice.le.1.and. &
oHMC_Vars(iID)%a2iMask.gt.0))
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Hydro variable (previous and update array)
where (a2dVarHydroPrevC .lt. 0.0) ! in meters
a2dVarHydroPrevC = 0.0000001
a2dVarHydroPrevH = 0.0000001
endwhere
where (a2dVarHydroPrevC .gt. 200.0) ! in meters
a2dVarHydroPrevC = 0.0000001
a2dVarHydroPrevH = 0.0000001
endwhere
! Updating hydro variable (using previous step and checking values under zero) --> WaterLevel (tirante)
a2dVarHydroUpdH = a2dVarHydroPrevH
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Routing sui versanti variable
where( a2dVarRouting .lt. 0.0)
a2dVarRouting = 0.0
endwhere
where ((oHMC_Vars(iID)%a2iChoice.le.1) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0))
a2dVarAreaCell = a2dVarAreaCell
elsewhere
a2dVarAreaCell = 0.0
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Equations for hillslope
where(a2dVarIntensityPrev.lt.0.0)
a2dVarIntensityPrev = 0.0
endwhere
! Updating variables surface hillsolpe cell input (exfiltration + runoff m^3/s]) --> CHECKING CONVERSION
where(oHMC_Vars(iID)%a2iMask.gt.0.0.and.(oHMC_Vars(iID)%a2iChoice.le.1))
a2dVarIntensityUpd = oHMC_Vars(iID)%a2dRunoffH*a2dVarAreaCell + a2dVarFlowExf*a2dVarAreaCell
endwhere
where ((oHMC_Vars(iID)%a2iChoice.le.1) .and. (oHMC_Vars(iID)%a2iMask.gt.0.0))
a2dVarQDisOut = a2dVarWidthH*a2dVarUhact*(tan(oHMC_Vars(iID)%a2dBeta)**0.5)*a2dVarHydroPrevH**(5.0/3.0)
where (a2dVarQDisOut*dDtSurfaceflow.gt.dKint*(a2dVarHydroPrevH*a2dVarWidthH*sqrt(a2dVarAreaCell)+ &
a2dVarIntensityUpd*dDtSurfaceflow))
a2dVarQDisOut = dKint*(a2dVarHydroPrevH*a2dVarWidthH*sqrt(a2dVarAreaCell)+a2dVarIntensityUpd*dDtSurfaceflow)/ &
dDtSurfaceflow
endwhere
!Upgrade Level on hillslopes
a2dVarHydroUpdH = a2dVarHydroPrevH +(-a2dVarQDisOut*dDtSurfaceflow+a2dVarIntensityUpd*dDtSurfaceflow)/ &
(a2dVarWidthH*sqrt(a2dVarAreaCell))
!Trapeeze method 1 iteration
a2dVarQDisOut = a2dVarWidthH*a2dVarUhact*(tan(oHMC_Vars(iID)%a2dBeta)**0.5)* &
(0.5*a2dVarHydroPrevH**(5.0/3.0)+0.5*a2dVarHydroUpdH**(5.0/3.0))
where (a2dVarQDisOut*dDtSurfaceflow.gt.dKint*(a2dVarHydroPrevH*a2dVarWidthH*sqrt(a2dVarAreaCell)+ &
a2dVarIntensityUpd*dDtSurfaceflow))
a2dVarQDisOut = dKint*(a2dVarHydroPrevH*a2dVarWidthH*sqrt(a2dVarAreaCell)+a2dVarIntensityUpd*dDtSurfaceflow)/ &
dDtSurfaceflow
endwhere
oHMC_Vars(iID)%a2dQH = a2dVarQDisOut !Streamflow in hillslopes
a2dVarHydroUpdH = a2dVarHydroPrevH+(-a2dVarQDisOut*dDtSurfaceflow+a2dVarIntensityUpd*dDtSurfaceflow)/ &
(a2dVarWidthH*sqrt(a2dVarAreaCell))
endwhere
!-------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Put null on input matrix because now used for Channels
where(oHMC_Vars(iID)%a2iMask.gt.0.0)
a2dVarIntensityUpd = 0.0
endwhere
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Check plant(s) availability
if (iNPlant .gt. 0) then
!------------------------------------------------------------------------------------------
! Cycle on plant(s)
iP = 0;
do iP = 1, iNPlant
!------------------------------------------------------------------------------------------
! Get plant information
iI = 0; iJ = 0;
iI = oHMC_Vars(iID)%a2iXYPlant(iP, 2);
iJ = oHMC_Vars(iID)%a2iXYPlant(iP, 1);
dVarAreaCell = oHMC_Vars(iID)%a2dAreaCell(iI, iJ)
! Check area cell
if (dVarAreaCell.lt.0) then
dVarAreaCell = oHMC_Vars(iID)%dDxM*oHMC_Vars(iID)%dDyM
endif
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Add plant data to intensity and updata dam volume
if (a2dVarHydroPlant(iP, iTTemp + 1) .ge. 0) then !Se ho le turbinate (si presume che i tempi siano relativi all'immissione)
!------------------------------------------------------------------------------------------
! Update intensity
a2dVarIntensityUpd(iI, iJ) = a2dVarIntensityUpd(iI, iJ) + a2dVarHydroPlant(iP, iTTemp + 1)*(dVarAreaCell)/ &
(1000*3600) !m^3 (giulia: eventualmente m3/s, no?)
! Update dam volume
a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) = a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) - &
a2dVarHydroPlant(iP, iTTemp + 1)*(dVarAreaCell)/(1000*3600)*dDtSurfaceflow !m^3
!------------------------------------------------------------------------------------------
else
!------------------------------------------------------------------------------------------
! Compute plant max discharge (m^3/s)
if ( a1dVarVDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) .lt. &
oHMC_Vars(iID)%a1dVMaxDam(oHMC_Vars(iID)%a1iFlagDamPlant(iP)) )then